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The consumption of cereals is becoming increasingly 
popular and whole grain products are considered to 
be health foods. Studies have shown that long-term, 
regular consumption of whole grain products not 

only satisfies in terms of satiety (Masisi et al., 2016), 
but also serves as a preventive and control measure 
for disease, as well as helping with weight manage-
ment (Kirwan et al., 2016), which is partly due to the 
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ABSTRACT

Background. Cereal products have significant health benefits, and current research on them has focused on 
formulation processes and functionality. However, studies on the bioavailability and potential functional 
activities using digestive modeling combined with chemometrics have not been reported.
Materials and methods. The bioaccessibility of the composite cereal meal replacement (CCMR) was 
evaluated by establishing the in vitro digestive model, using field emission scanning electron microscopy 
(FESEM), Fourier transform infrared spectroscopy (FTIR), in combination with chemometric methods such 
as dual indicator sequence analysis (DISA) and Pearson correlation analysis; potential functionality assess-
ments included in vitro hypoglycemic potential, glycemic index (eGI) value, and predicted duration of satiety 
in humans.
Results. The total digestibility of CCMR was 51.34 ±0.52%, with significant characteristics of variation in 
FESEM, FTIR and DISA before and after digestion; the total polyphenol content, total flavonoid content and 
antioxidant activity of CCMR were increased (p < 0.05) after digestion; the inhibition rate of α-amylase was 
7.95 ±0.21%, α-glucosidase was 9.95 ±0.34%, eGI was 45.10 ±0.52, and the duration of satiety was 3.50 
±0.25 h. 
Conclusion. CCMR can be used as a low GI food for weight loss, diabetic patients and special medical popu-
lation, the paper can enrich and extend the methodology for evaluation of cereal products by using digestive 
modeling, FESEM, FTIR and chemometrics methods.

Keywords: cereal beverage, bioaccessibility, functionality, infrared spectrum, field emission scanning elec-
tron microscopy 
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anti-oxidative stress effects of phytochemicals, such 
as phenolic compounds in grains (Masisi et al., 2016). 
The types of whole grain phenolics and their antioxi-
dant activity have been widely recognized in recent 
years (Gong et al., 2019).Phenolic substances are plant 
active substances, including phenolic acids, flavo-
noids, tannins, phytic acids, etc. (Masisi et al., 2016), 
which are the main contributors to the antioxidant 
properties of cereals, among which phenolic acids and 
flavonoids are common phenolic substances in whole 
grains (Pešić et al., 2019). 

During food processing and formulation, polyphe-
nols can interact with and bind to biomolecules in the 
food matrix, such as starches, proteins and lipids (Hui 
et al., 2021), and these interactions may affect the an-
tioxidant activity (Sahu et al., 2021), digestibility and 
glucose-lowering activity of the final cereal product 
(Bao et al., 2016). Polyphenols have the ability to 
inhibit the activity of α-amylase and α-glucosidase, 
which potentially slow down the breakdown of sugar 
absorption in our body and improve insulin resistance, 
resulting in improved glycemic levels (Yang et al., 
2023). 

The bioavailability of polyphenols is a key factor 
in expressing potential for health-promoting charac-
teristics such as antioxidant, hypoglycemic (Pešić et 
al., 2019). Glycemic index (GI) value is an indicator to 
differentiate the glycemic ability of food (Fontanelli et 
al., 2022).Studies have found that long-term consump-
tion of low-GI foods significantly improves glycemic 
control and insulin sensitivity in diabetics. Highly sa-
tiating foods curb calorie intake, which reduce the risk 
of being overweight and developing type 2 diabetes. 

Composite cereal meal replacement (CCMR) was 
made from corn, millet, rice and oats compounded 
with skimmed milk powder, based on whole grains, 
using a multi-grain, multi-hybrid model (Du et al., 
2023). Field Emission Scanning Electron Microscopy 
(FESEM) is commonly used to observe the morphol-
ogy and composition of ultrastructure on the surface of 
matter (Kalhori et al., 2022); Fourier Transform Infra-
red Spectroscopy (FTIR) has become commonly used 
and indispensable tool in modern structural chemis-
try and analytical chemistry, which is used to identify 
the structural composition of the substance or to de-
termine the chemical groups (Durazzo et al., 2018). 
Dual-indicator sequence analysis (DISA) can reveal 

the relationship between different samples by calculat-
ing the co-peak rate and the variant peak rate in the 
infrared spectra, which is widely used in the study of 
Chinese herbal medicine (Liu et al., 2021), although 
with less application in the food field.

Currently, the evaluation of whole grains is more 
concerned with the changes in the physicochemical 
properties of single grains before and after processing, 
and multigrain products have been evaluated mainly in 
terms of functionality, with fewer studies on bioavaila-
bility. Composite cereal products have great potential, 
but their composition is complex. High performance 
liquid chromatography (HPLC) can only be used to 
detect a few components of flavonoids and polyphe-
nols, which are not representative of the overall func-
tional composition. The method of in vitro digestion 
mode combined with FESEM, FTIR and DISA analy-
ses to evaluate the bioavailability of cereal products 
has not been reported yet, which has the advantage of 
not requiring complex sample pretreatment through 
overall non-destructive detection. 

In this study, the bioavailability and potential func-
tional activities of CCMR were evaluated by utiliz-
ing the in vitro digestion model and chemometrics. 
FESEM can intuitively characterize the digestive 
properties of CCMR, while FTIR and DISA can do 
so efficiently, which can be used for evaluating the di-
gestive properties of food products. This paper adds 
to the evaluation method of cereal beverages and will 
provide a theoretical basis for developing and apply-
ing functional cereal beverages.

MATERIALS AND METHODS

Materials and chemicals
The materials and chemicals used in the study were 
as follows: the corn was Northeast yellow corn pur-
chased from Jilin City (Jilin, China); rice, oats and 
millet from the Northeast Golden Dragonfish brand 
from the Baicheng Yihai Kerry (Panjin) Grain and 
Oil Industry Co., Ltd (Jilin, China); skim milk pow-
der from the Yili brand, purchased in New Zealand; 
commercially available corn cereal drink branded as 
Tujia Wugu, purchased from Enshi Maohe Food Co., 
Ltd (Hunan, China); Pepsin (3000 U/mg), trypsin (250 
U/mg), α-amylase (10000 U/g), α-glucosidase (50 U/
mg), glycosylase (100000 U/g), forinol reagent, gallic 
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acid purchased from Shanghai Maclean Biochemical 
Co., Ltd (Shanghai, China); 2,2’-azino-bis(3-ethylb-
enzothiazoline-6-sulfonate) (ABTS+) was purchased 
from Xi’an Jingbo Biotechnology Co., Ltd (Shanxi, 
China); rutin and catechin were purchased from Fu-
zhou Feixing Biotechnology Co., Ltd (Fujian, China). 
All the above reagents and chemicals were of analyti-
cal reagent grade. 

Preparation of Composite Cereal Meal 
Replacement (CCMR)
CCMR was prepared by mixing corn, rice, millet, 
skimmed milk powder and oats in a quantity ratio 
55:10:10:5:15. 360 mL of distilled water was added 
and boiled for 1 min to obtain a total volume of 330 ml 
of CCMR with a grain content of 10%. It was then 
homogenized for 10 min at 20 MP, and sterilized for 
15 min at 121°C (Du et al 2023). The technical route 
of this study is shown in Figure 1.

Simulated digestion in vitro
The preparation of simulated salivary solution includ-
ed 0.238 g of Na2HPO4, 0.019 g of KH2PO4 and 0.8 g 
of NaCl, which were dissolved in water. The pH val-
ue of the solution was adjusted to 6.75, and 0.02 g of 
α-amylase was added, dissolved and diluted to 100 mL 
(Minekus et al., 2014). The preparation of the simu-
lated gastric solution included 2 g of NaCl, 3.2 g of 

pepsin, and 7 ml of 36.5% hydrochloric acid (v/v) was 
dissolved in distilled water to 100 mL. The preparation 
of the simulated intestinal solution included 0.45 g of 
trypsin and 3 g of porcine bile salt. 6.25 g of NaHCO3 
were dissolved in distilled water to 500 mL and stored 
at 4°C (Huang et al., 2019). 20 mL centrifuge tubes 
were numbered 1 to 10, to which 1g of the sample and 
0.5 mL of simulated saliva were added and shaken at 
37℃ for 5min. 7 mL of 0.9% saline (v/v) and 1.6 mL 
of gastric fluid were then added to them. The pH was 
adjusted to 2.0 with 36.5% concentrated hydrochloric 
acid, with water then being added to 10 mL. Centrifuge 
tubes were shaken at 37°C to simulate gastric digestion 
for 0, 30, 60, 90, 120 min, then centrifuged at 4500 r/min 
for 10 min to obtain the supernatant and precipitates. 
Based on 2 h of gastric digestion, 3 mL of 0.9% saline, 
0.5 mol/L NaHCO3, were added to centrifuge tubes 
No. 6–10, and then the pH was adjusted to 7.5. 5 mL 
of the intestinal fluid and water were added to 20 mL, 
digested at 37°C for 30, 60, 90, 120, and 150 min, 
then centrifuged at 4500 r/min for 10 min to obtain 
the supernatants and precipitates (Qin et al., 2022). 

Digestive properties in vitro
The process of determining the in vitro digestibility 
of CCMR and pure maize powder (PMP) included the 
digestive fluid from 2 hours of gastric digestion and 
3 hours of intestinal digestion. The digestive fluid was 

Fig. 1. Technical route
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poured into a pouch made of 150 Mm diameter mi-
croporous filter membrane and put into a beaker with 
NaCl for filtration. When the solution did not diffuse 
outwards, it was dried, weighed and the mass differ-
ence calculated before and after digestion (Kamiloglu 
et al., 2014). 

In FESEM measurement, an appropriate number 
of samples before and after digestion were fixed on 
a sample stage with conductive adhesive and subject-
ed to (3 times) sputter-coated gold spraying treatment. 
The morphology was then observed using a scanning 
electron microscope (Tokyo Electron Ltd, JSM-7610F 
plus, Japan) (Abd El-Lateef et al., 2020). Observation 
magnification was 1000 and 3000 times, respectively.

The FTIR measurement was that the samples be-
fore and after digestion were mixed with KBr powder 
in a ratio of 1:150 and measured in the Fourier infra-
red spectrometer (Harbour East Technology Develop-
ment Ltd., Tianjin, China). The scanning range was 
4000~500 cm–1 at a resolution of 4 cm–1 and the num-
ber of scans was 32, with the smoothing factor for the 
second order derivative being 21 (Cao et al., 2022).

In DISA, the common and variant peak ratios in 
the infrared fingerprints can reflect the differences 
between before and after digestion to a certain extent 
(Liu et al., 2021). The DISA of the common peak ra-
tio P refers to the percentage of the infrared spectral 
peaks that appear both before and after digestion (the 
number of common peaks) to the total number of all 
independent peaks; the variant peak ratio Pva refers to 
the percentage of the variant peaks in the infrared pro-
file before digestion to the number of common peaks; 
and the variant peak ratio Pvb refers to the percentage 
of the variant peaks in the post-digested profile to the 
number of common peaks.

Determination of total polyphenol content (TPC) 
and total flavonoid content (TFC) 
The TPC in supernatants with different digestion times 
was determined by the Folin Phenol Reagent Colorim-
etry (Boateng et al., 2023); TFC was determined by 
means of the aluminum chloride-sodium nitrite colori-
metric method (Mkaouar et al., 2018).

Determination of antioxidant activity
The antioxidant activity of the supernatants with differ-
ent digestion times was determined. When determining 

the total reducing capacity, 200 μL of the sample was 
mixed with 200 μL of PBS and 200 μL of 1% potas-
sium ferricyanide, then held in a water bath at 50°C 
for 20 min. After this, 200 μL of 10% TCA was added 
and shaken well, centrifuged at 3000 r/min for 5 min, 
and the supernatant removed. 200 μL of supernatant 
was mixed with 500 μL of distilled water and 100 μL  
of 0.1% ferric chloride, then allowed to stand for  
8 min, after which absorbance was measured at 700 nm 
(Akhtar et al., 2022). Equation (1) is used to calculate 
the total reducing capacity:

 Total reducing capacity = A1–A0 (1)

where: 
A1 is the absorbance of the sample
A0 is the absorbance of the negative control.

To determine the OH radical scavenging activity, 
150 μL of 7.5 mmol/L Fe2SO4, 300 μL of 8 mmol/L sal-
icylic acid, 2 mL of sample and 300 μL of 7.5 mmol/L 
H2O2 were mixed well, and the absorbance was meas-
ured at 510 nm after shaking well for 45 min (Hernán-
dez‐García et al., 2022). Vitamin C (Vc) (0.1, 0.2, 
0.4, 0.6, 0.8 mg/mL) was used as the positive control. 
Equation (2) is used to calculate OH radical scaveng-
ing activity:

OH radical scavenging 
activity (%) =

A0 – A1 × 100 (2)A0

where: 
A0 is the absorbance of the negative control
A1 is the absorbance of the sample.

When determining ABTS+ scavenging activity, 
100 μL of sample was mixed with 900 μL of ABTS+ 

working solution, and after a 10-minute reaction, the 
absorbance was measured at 734 nm (Qin et al., 2022). 
Vc (0.25, 0.5, 1, 2, 4 mg/mL) was used as the positive 
control. Equation (3) is used to calculate ABTS+ scav-
enging activity:

ABTS+ radical scavenging 
activity (%) =

A0 – A1 × 100 (3)A0

where: 
A0 is the absorbance of the negative control
A1 is the absorbance of the sample.
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Measurement of hypoglycemic activity 
The CCMR was centrifuged at 3000 r/min for 5 min 
and the supernatant was used to determine the inhibi-
tion of α-amylase. 0.5 mL of 10 μ/L α-amylase was 
added to 0.5 mL of the sample and reacted at 60℃ for 
10 min, 1 mL of 1 mg/mL starch solution was add-
ed, followed by a water bath at 60℃ for 15 min, and 
0.5 mL of 0.1mol/L HCl and 2 mL of dilute iodine 
solution were added as the control group. Acarbose 
(0, 1, 2, 4, 6, 8 mg/mL) was used as a positive control 
(Adisakwattana et al., 2012). The calculation is shown 
in Equation (4):

α – amylase inhibition 
rate (%) =

A0 × 100 (4)A1 – A2

where: 
A0 is the absorbance of the sample
A1 is the absorbance of the negative control
A2 is the absorbance of the blank control. 

When determining the inhibition rate of α-gluco-
sidase, 100 μL of sample and 300 μL of 1 mg/mL 
α-glucosidase were added to 600 μL of PBS, and then 
100 μL of 0.74 mg/mL PNPG was added for a 15-min 
water bath at 37°C. 4 mL of Na2CO3 were added and re-
acted for 20 minutes of a water bath at 37°C, and the ab-
sorbance was measured at 400 nm (Adisakwattana et al., 
2012). Acarbose (0.005, 0.01, 0.02, 0.04, 0.06 mg/mL)  
was used as a positive control. The calculation is shown 
in Equation (5):

α – Glucosidase 
inhibition rate (%) =

(A0 – A1) – (A2 – A3) × 100 (5)A0 – A1

where: 
A0 is the absorbance of the negative control
A1 is the absorbance of the blank control
A2 is the absorbance of the sample 
A3 is the absorbance of the background control.

Measurement of eGI
The process of determining starch digestibility includ-
ed CCMR and PMP containing 1 g of carbohydrate 
(Englyst et al., 2003) which were added to 10 mL of 
deionized water in a boiling water bath for 15 min-
utes, with 7 mL of 0.1 mol/L phosphate buffer, 1 mL 
of (2.5 g/L) amylase and 6 μL of pepsin-guar gum 
mixture then being added to the samples. The pH 

was adjusted to 1.5 with HCl, and then subjected to 
a 37℃ water bath for 30 min. 10 mL of phosphate 
buffer was added and the pH was adjusted to 6.9 with 
NaOH. A 125 μL of MgCl-CaCl2 solution and 125 μL 
of trypsin were added, along with 400 uL of starch to 
glucosidase, made up with water to 50 mL and incu-
bated for 3 h. 1 mL of the sample was taken at 0 min, 
30 min, 60 min, 90 min, 120 min, 150 min, 180 min 
and the enzyme inactivated in 4 mL of anhydrous 
ethanol, then centrifuged to extract the supernatant 
(Oñate Narciso and Brennan, 2018). The 3,5-dinitro-
salicylic acid (DNS) method was used to determine 
the glucose content. 1 mL of supernatant and distilled 
water, and 1.5 mL of DNS solution were taken into 
a 25 mL stoppered test tube. After boiling in a water 
bath for 15 min, distilled water was added to 25 mL, 
and absorbance was measured at 550 nm (Bekele et 
al., 2020). The eGI values were determined according 
to previous methods (Ren et al., 2021). White bread 
was used as the reference standard and its hydroly-
sis rate was defined as 100 (Lawal et al., 2022). The 
protein, fat, total dietary fiber and moisture in CCMR 
and PMP were determined using the Kjeldahl method, 
Soxhlet extraction, enzyme gravimetric method and 
direct drying method, respectively, and carbohydrates 
were determined by calculation (Yang et al., 2023). 
The nutrient composition is shown in Table 1. Formula 
(6) and (7) was calculated as follows:

 HI = AUC1/AUC2 × 100% (6)

 eGI = 0.862 HI + 8.198 (7)

where:
AUC1 is the area under the hydrolysis curve of the 
sample 
AUC2 is the area under the hydrolysis curve of 
white bread.

Table. 1. Nutritional analysis of PMP and CCMR

Nutrient 
composition

Carbo-
hydrate

g

Protein
g

Fat
g

Total 
dietary 
fiber, g

Energy
kJ

PMP, 100 g 81.83 6.94 1.25 6.25 1 610.21

CCMR, 100 g 74.61 10.58 1.05 7.79 1 546.64
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Satiety measurement
Volunteers (15 men and 15 women) were recruited 
and selected with average age 20–40 years, an average 
weight index of 21.15 ±1.75 kg/m2, without respirato-
ry, digestive and endocrine system diseases or relevant 
family history, without bad habits, drugs or weight 
loss within the last month (Ni et al., 2021). Before the 
experiment, volunteers were trained according to the 
Visual Analog Scale (VAS), with 0 meaning “not at 
all” and 10 meaning “very much”. Volunteers were 
required to make marks on the satiety VAS scale at 
appropriate locations, which represented their sensory 
levels at the time of empty stomach (0 min), 15 min, 
30 min, 45 min, 60 min, 90 min, 120 min, 180 min, 
and 240 min (Evenson et al., 2022). The experimenter 
scored the volunteers’ results based on the distance 
measured from point 0 to the volunteers’ markers. The 
samples were CCMR and a commercially available 
cereal drink and glucose with equal energy (300 kcal).

Statistical processing
All experiments were performed three times and with 
results expressed as mean ± standard deviation. SPSS 
statistical software and origin version 2021 were used 
for data analysis, and the analysis of variance be-
tween groups of data was performed using the Tukey 
experiment. Statistical significance was designated 
*p < 0.05, **p < 0.01.

RESULTS AND DISCUSSION

In vitro digestive characteristics
The digestibility rate of CCMR was 30.13 ±0.17%, 
and of PMP it was 19.25 ±0.21% after gastric diges-
tion; after intestinal digestion these rates were 24.62 
±0.35% and 17.18 ±0.15%, and total digestibility was 
51.34 ±0.52% and 31.47 ±0.40%, respectively. The 
results are presented in Fig 2. CCMR has a higher di-
gestibility than PMP, and the main factors influencing 
the digestibility of CCMR were antinutritional fac-
tors such as tannins, phytase and enzyme inhibitors in 
the grain ingredients (Nikmaram et al., 2017). Corn 
contains phytase, which competes for the mineral co-
factor required by peptidase to interfere with protein 
digestibility (Gupta et al., 2015); Millet has a high tan-
nin content, which reduces the hydrolytic activity of 

CCMR by interacting with proteins (peptidases and 
protein substrates) and minerals in an aqueous envi-
ronment, forming complexes and precipitating (An-
nor et al., 2017); CCMR is rich in dietary fiber, which 
can increase the viscosity of the gastrointestinal tract 
and affect the rate of digestibility and absorption rate 
by influencing the diffusion of hydrolytic enzymes to 
their substrates. The study shows that there was no 
single effective method can remove completely all 
the antinutritional factors present (Weerasooriya et 
al., 2018). Firstly, pretreatment processes such as de-
hulling, crushing and milling reduce phytase content 
in CCMR, and also exposure of the protein matrix to 
the environment increases hydrolysis as the cellular 
structure has been torn (Wu et al., 2017). Secondly, 
simple heat treatments such as boiling can partially 
inactivate anti-nutritional factors in CCMR such as 
trypsin inhibitors (Joye, 2019). The digestibility of 
CCMR reached 50%, indicating that CCMR could be 
well absorbed and promoted as a nutritional product. 

In FESEM analysis, the microstructure of CCMR 
before digestion is shown in Figure 3 (A, B). It can be 
seen that the microstructure of CCMR was irregular in 
shape, with irregular elevations, a flaky whole, with-
out voids on the surface, and was relatively rough. Af-
ter digestion, as shown in Figure 3 (C, D), it can lead 

Fig. 2. In vitro digestibility
Note: n = 3, significant differences from the control group 
were shown as *p < 0.05 and **p < 0.01
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to the disruption of the cell structure, and digestion 
might lead to the decomposition of CCMR into micro-
spherical particles with smooth surfaces and increased 
surface area, thus affecting the physical and chemical 
properties of CCMR. 

The FTIR spectra in 4000–500 cm–1 before and 
after digestion, and the SD-IR in the 3000–500 cm–1 
of CCMR were shown in Figure 4 (A, B). The strong 
broad absorption peaks 3437.13 cm–1 and 3451.20 
cm–1 were O-H and N-H stretching vibrations of inter-
molecular hydrogen bonds and absorption peaks from 
the bending vibrational peaks outside the O-H surface 
can be observed around 765.51, 754.6, 707.23 and 
697.33 cm–1 (Liu et al., 2021). The peaks near 2952.17 
and 2871.04 cm–1 belonged to the asymmetric stretch-
ing vibrations of –CH3. –CH3 bending vibration peaks 
can be found near 1420.19, 1405.99, 1373.28, 1367.82 
cm–1 (Liang et al., 2023). Near 2923.86, 2840.02 cm–1 
were the asymmetric stretching vibrations of CH2 
(Yuan et al., 2015). The C=O stretching vibration peak 
was observed near 1728.11 cm–1 and near 1647.68 
and 1627.91 cm–1, corresponding to the stretching 

vibrations of C=C. The peaks near 1534.84, 1506.21, 
1460.06, 1451.33 cm–1 came from the stretching vi-
bration of the C=C in the benzene ring. The peaks 
were around 881.06, 857.32, 850.04, 785.61, 763.51, 
707.23 and 697.33 cm–1, which corresponded to the 
out-of-plane bending vibrations of C-H in the ben-
zene ring. Absorption peaks near 1291.46, 1237.26, 
1155.17,1095.80, 1082.47, 1038.54 and 1007.52 cm–1 
were from C-O stretching vibrations (Liang et al., 
2023). There were many peaks in the spectral fre-
quency in the region of 1650–1400 cm–1 and below 
1300 cm–1. The CCMR before and after digestion had 
the structure of aryl ring (C6) and more O-H groups, 
indicating that CCMR contained phenolic acid com-
pounds such as ferulic acid (Holser, 2012). The peaks 
near 3437.13, 2923.86, 2871.04,1728.11, 1534.84, 
1506.21, 1460.06, 1451.33, 1291.46, 1237.26, 
1155.17,1095.80, 1082.47, 1038.54 and 1007.52 cm–1 
were reduced after digestion, which showed that the 
peak intensity of CCMR in the characteristic function-
al groups of polyphenols decreased. The content of 
polyphenol compounds in the precipitates of CCMR 

Fig. 3. FESEM micrographs of CCMR before digestion (A) 1000×; (B) 3000×; After diges-
tion (C) 1000×; (D) 3000×
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was reduced, and digestion may promote the release of 
relevant active substances into the supernatant. 

The DISA results of the SD-IR of CCMR before 
and after digestion show that the absorption peaks near 
2952.17, 1506.21 and 656.77 cm–1 disappeared after 
digestion, and a new peak appeared at 1685.16 cm–1, 
which showed that digestion could lead to changes 
in the content of C=C-containing compounds and in 
the internal structure of compounds. There were 31 
common peaks before and after digestion, which were 
near 2913.99, 2871.04, 2840.02, 2350.88, 2327.02, 
1728.11, 1627.91, 1534.84, 1451.33,1451.33, 1405.99, 
1367.82, 1329.64, 1291.46, 1231.81, 1196.02, 
1145.91, 1095.80, 1074.33,1038.54, 1007.52, 971.73, 
909.69, 881.06, 850.04, 785.61, 754.6,0, 697.33, 
637.68, 601.89, 563.71, and 515.99 cm–1 with the ra-
tio of P: Pva: PVb = 88.57:9.68:3.22. The proportion 
of common peaks was larger, which indicated that 
CCMR compositions before and after digestion were 
similar. Combined with FTIR results, digestion might 
contribute to the decomposition and transformation of 
some substances to be released into the supernatant, 
mainly in changes in the peak intensity of the char-
acteristic peaks of phenolic compounds. This was in 
agreement with the microspherical results of FESEM.

In vitro antioxidant activity of CCMR
The variations in the TPC and TFC of CCMR and 
PMP during digestion are shown in Fig. 5A. The 

standard curve of gallic acid in TPC determination 
was Y = 0.8055x + 0.073, R2 was 0.9991. The TPC 
of CCMR was 3.21 ±0.13 mg/g and PMP was 1.67 
±0.11 mg/g before digestion and gradually increased 
to 6.45 ±0.16 mg/g and 3.24 ±0.14 mg/g, respectively, 
during gastric digestion and reached 6.74 ±0.10 mg/g 
for CCMR and 3.11 ±0.15 mg/g for PMP at the end 
of digestion. During the digestion process, the trend 
of TPC of CCMR and PMP was firstly increased (p < 
0.05) and then basically remained constant (p > 0.05).
The standard curve of catechin in the determination of 
TFC was Y = 1.8657x – 0.014, R2 was 0.9995. Before 
digestion, the TFC of CCMR was 0.50 ±0.07 mg/g and 
PMP was 0.32 ±0.09 mg/g. During gastric digestion, 
the TFC increased initially and then continued to de-
crease, but generally showed an upward trend to reach 
1.13 ±0.10 mg/g and 0.51 ±0.06 mg/g, respectively. 
During the intestinal digestion, the TFC increased 
firstly and then remained basically stable to reach 1.86 
±0.15 mg/g and 0.83 ±0.11 mg/g, respectively.

The high content of polyphenols in digestive was 
due to the destruction of the chemical bond between 
polyphenols and proteins by pepsin and trypsin, which 
led to the release of phenolic substances (Choi et al., 
2017). The TFC decrease during gastric digestion may 
be caused by the acidic environment of gastric diges-
tion and the inhibitory effect of pepsin on the release 
of flavonoid (Choi et al., 2017). The increased content 
of flavonoids in intestinal digestion may be due to the 

Fig. 4. A FTIR spectra of CCMR after digestion (a) and before digestion (b); B SD-IR spectra of CCMR 
after digestion (a) and before digestion (b)
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increased pH and alkaline conditions, which lead to 
the hydrolysis and release of flavonoids originally de-
posited in an acidic environment, or the degradation 
of other phenolic compounds, such as phenolic acids 
and anthocyanins, and the transformation of polyphe-
nol structure into more stable flavonoids (Sun et al., 
2019). 

Digestion can increase TPC and TFC because of 
the gradual destruction of the cell wall of the food 
matrix by pepsin and trypsin in the simulated diges-
tive solution (Hettiarachchi et al., 2021), which was 
consistent with the results of FTIR analysis. Both TPC 
and TFC were higher in CCMR than PMP, which may 

be related to the large variety of cereals in CCMR. 
Rice, oats and millet all contain more phenolic com-
pounds, and the synergistic effect between different 
types of cereals promoted the release of related active 
substances and increased bioaccessibility.

The digestion process promoted the release of the 
relevant active substances from the grains and anti-
oxidant activity of CCMR increased compared to that 
before digestion. The results are shown in Fig. 5 (B, 
C, D). 

As shown in Fig. 5B, the total reducing capacity of 
CCMR increased from 0.21 ±0.05 to 0.35 ±0.05, and 
the total reducing capacity of PMP increased from 0.10 

Fig. 5. Variations in TPC, TFC and antioxidant activity during simu-
lated digestion. A variation in TPC and TFC; B variation in total reduc-
ing capacity; C variation in OH radical scavenging rate; D variation in 
ABTS radical scavenging rate
Note: n = 3, significant differences from the control group were shown 
as *p < 0.05 and ** p < 0.01.
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±0.01 to 0.21 ±0.05 after gastric digestion. CCMR 
has greater reducing capacity than PMP and showed 
a trend of increasing and then remaining basically un-
changed throughout the digestion period (p < 0.05). 

The standard curve for the scavenging of OH radi-
cals by Vc was Y = 1.0813x + 0.1452, R2 was 0.9994. 
From Fig. 5C, the scavenging activity of OH radicals 
was 72.43 ±2.55 % for CCMR and was 59.20 ±3.21% 
for PMP before digestion, reaching 70.48 ±3.85% for 
CCMR (p < 0.05) and 48.84 ±3.27% (p < 0.05) for 
PMP after digestion. 

The standard curve for the scavenging of ABTS+ 
radical by Vc was Y = 21.622x + 0.0826, R2 was 
0.9995. From Figure 5D, the scavenging activity rate 
of ABTS+ of CCMR was 31.89 ±1.53% and PMP was 
13.93±1.74%; it gradually increased to 45.93 ±1.95% 
and 18.80 ±1.33% after gastric digestion and tended to 
increase initially and then remain basically unchanged, 
reaching 91.93 ±2.84% and 74.25 ±3.71% after intes-
tinal digestion. The changes in total reducing capac-
ity, OH radical scavenging activity and ABTS+ radical 
scavenging activity were consistent with trends in 
TFC and TPC, respectively.

In addition, milk proteins in CCMR can be used 
in the gastrointestinal tract as carriers for delivering 

antioxidant compounds that protect the gastrointesti-
nal tract itself from oxidative damage (Tagliazucchi et 
al., 2016). The larger percentage increase in antioxi-
dant activity during gastric digestion was associated 
with a rapid increase in TPC and TFC, while during 
intestinal digestion TPC and TFC increased slowly 
and then remained essentially unchanged. The chang-
es in antioxidant activity were consistent with them. 
In summary, the antioxidant activity of CCMR was 
higher than that of PMP, and the antioxidant potential 
active ingredients of CCMR were released and anti-
oxidant activity increased after digestion.

Correlation of TPC and TFC with antioxidant 
activity 
Attained through Pearson’s correlation coefficient anal-
ysis, the results of the correlation analysis between TPC 
and TFC and antioxidant activity in CCMR and PMP 
during digestion are shown in Figure 6. The color bias 
towards blue and gray was a positive correlation, close 
to pink and purple was a negative correlation, while 
the larger the absolute value of the correlation coef-
ficient, the greater the correlation between the factors. 
TPC and TFC in both CCMR and PMP exhibit some 
correlation with antioxidant activity. In CCMR, total 

Fig. 6. Correlation analysis of TPC and TFC with antioxidant capacity in PMP and CCMR. A Correlation 
of TPC and TFC with oxidative capacity in PMP; B Correlation of TPC and TFC with oxidative capacity 
in CCMR
Note: n = 3, significant differences from the control group are shown as *p < 0.05 and **p < 0.01.

http://doi.org/10.17306/J.AFS.001247
http://doi.org/10.17306/J.AFS.001247
http://www.food.actapol.net/


461

Du, M., Liu, J., Zheng, Y., Feng, L., Zhang, J., Wang, Y., Zhou, H., Sun, K. (2024). Evaluation of bioavailability and potential func-
tional activity of composite cereal meal replacement. Acta Sci. Pol. Technol. Aliment., 23(4), 451–466. http://doi.org/10.17306/J.
AFS.001247

www.food.actapol.net/

reducing capacity mainly had a good positive correla-
tion with TPC (p < 0.05), and OH radical scavenging 
activity and ABTS+ scavenging activity had a positive 
correlation with both TPC and TFC (p < 0.05). In PMP, 
antioxidant activity has a positive correlation with both 
TPC and TFC (p < 0.05). CCMR had a higher content 
of active substances such as TPC and TFC and stronger 
antioxidant activity than PMP (p < 0.05). The combi-
nation of cereals, miscellaneous grains and digestion 
can increase TPC, TFC and antioxidant scavenging ac-
tivity of CCMR (Apea-Bah et al., 2016). 

Polyphenols are a major contributor to the antioxi-
dant properties of cereals. During gastric digestion, 
TPC and TFC in CCMR increased and there was a gen-
eral increase in antioxidant activity. Gastric digestion 
may cause structural changes in the fibrous compo-
nents of the cereal cell wall or break covalent bonds 
between polyphenols and cellulose, polysaccharides, 
and proteins, etc. The complexes are thereby hydro-
lyzed, facilitating the release or conversion of pheno-
lics, and thus affecting the total antioxidant effect (Sahu 
et al., 2021). Polyphenols contain other phenolics such 
as tannins and phytic acid in addition to phenolic ac-
ids and flavonoids. In addition to polyphenols, grains 
contain other antioxidant active components, such as 
cellulose, polysaccharides and organic acids. The total 
reducing capacity, OH radical scavenging activity and 
ABTS+ radical scavenging activity were the combined 
effect of multiple antioxidant components in CCMR. 
Correlation analysis showed that changes in TFC were 
highly correlated with changes in TPC, and the anti-
oxidant activity of CCMR was directly correlated with 
polyphenol content.

Hypoglycemic activity of CCMR
The rate of inhibition of α- amylase by acarbose was 
Y = 0.1034x – 0.026427 and R2 was 0.9994, and the in-
hibition rate of α- amylase for CCMR was 7.95 ±0.21%. 
Meanwhile, the inhibition rate of acarbose at 1 mg/mL 
was 7.88 ±0.21%. The rate of inhibition of α- glucosi-
dase by acarbose was Y = 1.2029x – 0.0985, R2 was 
0.999, the inhibition rate of CCMR for α-glucosidase 
was 9.95 ±0.34%, and the inhibition rate for acarbose 
at 0.000748 mg/mL was 9.95 ±0.18%. There was no 
hypoglycemic activity detected from PMP. 

The variations in starch hydrolysis rates of CCMR, 
PMP and white bread with time in the evaluation of 

glycemic index experiment in vitro are shown in Fig-
ure 7A. The area AUC of the hydrolysis rate curve 
for PMP was greater than AUC for CCMR (p < 0.05). 
White bread can be used as a reference food in the 
evaluation of eGI, where eGI value = 100 (Simsek 
and El, 2015). The eGI value for CCMR was 54.10 
±0.52<55.00 and for PMP it was 65.91 ±0.57, which 
was close to the value of 68 in the China Food Com-
position Tables (6th Edition), indicating that the data 
has validity. Firstly, oats and skim milk powder are 
rich in high-quality protein, which could reduce the 
digestibility of starch through mechanisms such as 
inhibition of amylase activity (Bao et al., 2023). Sec-
ondly, millet has lower starch digestibility, and its 
addition to other grains lowered the rate of glucose 
release from α-glucosidase and α-amylase, thereby 
reducing the glycemic index of the grains (Annor et 
al., 2017). Thirdly, the interaction between β-glucan 
and protein in oats could contribute to the change in 
the microstructure of CCMR by the starch-protein 
matrix, thus altering the starch digestibility of CCMR 
and reducing the starch hydrolysis rate (Nguyen et al., 
2022), which in turn decreases the eGI value. β-glucan 
in oats could also adsorb glucose molecules, hinder 
glucose transport, and inhibit the activity of glyco-
lytic enzymes (Zhang and Wang, 2016). Finally, the 
dietary fiber content of CCMR is 0.38 g/100g (Du et 
al,. 2023), negatively correlated with GI values (Bae 
et al., 2016), which can reduce the rate of glucose 
release by inhibiting the action of amylase to reduce 
digestibility.

Studies have shown that most natural antioxi-
dants, such as polyphenols and flavonoids, can inhibit 
α-amylase and α-glucosidase even after digestion. This 
inhibition is eventually expected to show significant 
antidiabetic activity (Bao et al., 2016). Meanwhile, the 
interaction of phenolic compounds with carbohydrates 
can reduce the amount of postprandial glucose re-
leased from CCMR (Ajayi et al., 2021). Tannin’s inter-
action with gluten in cereal foods creates a barrier that 
prevents digestive enzymes from entering the starch 
and enhances tannin’s ability to slow starch degrada-
tion (Yang et al., 2023). Lower starch digestibility can 
inhibit the rate of postprandial blood glucose eleva-
tion and play a regulatory role in chronic diseases such 
as obesity and diabetes (Tagle-Freire et al., 2022). In 
contrast to drugs, CCMR has weak hypoglycemic 
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activity as a grain-based food. Thus, CCMR was a low 
GI food suitable for diabetics, with the characteristic 
of not raising glucose, which is available in a wide 
range of people. 

Effect of CCMR on satiety
Based on the follow-up records of 30 volunteers who 
consumed 300 kcal of CCMR, a commercially avail-
able cereal drink and glucose between 0 and 240 min-
utes after the meal, the satiety score was used as an 
indicator score and the average score was calculated. 
As shown in Fig. 7 B, three samples revealed the same 
satiety trend, with the peak satiety occurring 15 min 
after the meal. The area under the satiety curve was 
greater of CCMR than the commercially available 
beverage, with a significant difference (p < 0.05). The 
satiety values for CCMR, the commercially available 
cereal beverage and glucose reached 0 at 210 min, 
180 min and 150 min, respectively. The satiety index is 
1 for glucose, the curve area showed a satiety index of 
3.38 ±0.24 and 1.91 ±0.21 for CCMR and commer-
cially available cereal drink, respectively. The duration 
of satiety of CCMR was 3.50 ±0.25 h, and of the com-
mercially available cereal drink it was 3.00 ±0.25 h.

The reasons for the better satiety duration in CCMR 
are as follows: firstly, the higher viscosity of CCMR 
increases its satiety (Stribițcaia et al., 2022), and the 
high viscosity of β-glucan in oats is effective in atten-
uating the glycemic response, thereby slowing down 
gastric emptying and glucose absorption (Zaremba et 
al., 2018), thus prolonging satiety and lowering the 

glycemic index by increasing the viscosity of CCMR. 
Secondly, the high content of dietary fiber prolongs 
the satiety of CCMR (Du et al.,2023), which reduces 
the amount of food intake and achieves fat loss (Ye 
et al., 2015). Finally, dietary proteins provide satiety 
signals that influence CCMR intake through central 
and peripheral neurohumoral mechanisms (Luhovyy 
and Akbari, 2021), facilitating the regulation of satiety 
and thus body weight. CCMR had a higher satiety ef-
fect than high-glycemic foods or meals, which is con-
ducive to postprandial blood glucose stabilization and 
weight control (Ni et al., 2021). 

CONCLUSION

In this study, chemometrics-based methods, Pearson’s 
correlation analysis and DISA combined with FESEM 
and FTIR were used to assess the digestive properties 
and potential functionality of CCMR in vitro and in 
vivo. The results showed that CCMR had higher di-
gestibility, TPC, TFC and antioxidant activity than 
PMP, with better bioavailability and some hypoglyce-
mic activity, and that satiety experiments proved the 
effectiveness of a reduced energy intake. CCMR can 
be assessed as a low GI food with good bioavailabil-
ity and adjunctive hypoglycemic potential. Therefore, 
this study may provide a methodology for the quality 
assessment of meal replacements and provide a theo-
retical basis for better utilization of cereals and en-
hancement of the health values of compound cereal 
products.

Fig. 7. A Starch hydrolysis rate; B Satiety curve (n = 3)
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