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Diarrhetic shellfish poisoning (DSP) is one of the ma-
rine biological toxins with the highest frequency and 
the widest distribution in coastal waters around the 
globe (Blanco et al., 2007). Okadaic acid (OA) is the 
most important component of DSP, and human con-
sumption of mussels contaminated with high concen-
trations of OA toxins will cause diarrhetic poisoning, 
or even death in severe cases. The main symptoms 
include gastrointestinal disorders, diarrhea, abdominal 
pain, fever, vomiting and nausea (Corriere et al., 2021; 

Mak et al., 2005). It has been shown that eating DSP-
contaminated mussels may increase the risk of diges-
tive system cancer (Manerio et al., 2008). It should be 
noted that the nature of DSP toxins will not change 
for heating or freezing, and the taste of DSP-contam-
inated mussels will also not be affected. If there is no 
professional detection instrument, it is usually difficult 
to find toxin-contaminated mussels. As a result, exten-
sive attention has been given to how to detect DSP 
toxin-contaminated mussels effectively and quickly.
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ABSTRACT

Background. The diarrhoeal shellfish poisoning (DSP) toxin is a powerful marine biological toxin. Eating 
DSP toxin-contaminated mussels will lead to serious gastrointestinal diseases. To this end, a method for the 
detection of DSP toxins using near-infrared reflectance spectroscopy combined with pattern recognition is 
proposed.
Material and methods. In the range from 950−1700 nm, spectral data of healthy mussels and DSP-con-
taminated mussels were obtained. To select the optimal band subsets, a band selection algorithm based on 
model cluster analysis was applied. As distinguishing DSP toxin-contaminated mussels from healthy mussels 
is a classification problem of imbalanced data, an improved fuzzy support vector machine-based recognition 
method was proposed. The influence of the parameters of the band selection algorithm and the fuzzy support 
vector machine on the model performance was analyzed.
Results. Compared with the traditional support vector machine, the proposed model has better performance 
in detecting DSP toxins and is not affected by the imbalance ratio. Its geometric mean value can reach 0.9886 
and the detection accuracy can reach 98.83%.
Conclusion. The results show that as an innovative, fast and convenient analytical method, near-infrared 
spectroscopy is feasible for the detection of DSP toxins in mussels.
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Traditional DSP toxin detection methods include 
mouse bioassay, enzyme-linked immunosorbent assay 
(Du et al., 2020), protein phosphatase inhibition as-
say (Chen et al., 2018) and high-performance liquid 
chromatography tandem mass spectrometry (Ioutsi et 
al., 2022). Although these methods are accurate, they 
are not suitable for daily monitoring because of their 
complicated operation, high cost, destructiveness, and 
lack of fast detection capability. Consequently, it is 
necessary to develop a simple, real-time, efficient and 
low-cost DSP toxin detection technology.

In view of the shortcomings and limitations of 
these methods, near-infrared (NIR) spectroscopy com-
bined with chemometrics and machine learning meth-
ods has been explored as an alternative method for 
DSP toxin detection. It can provide fast, accurate, sim-
ple and reliable food quality and safety measurement 
methods, and has been used to detect meat, fruits and 
vegetables, seafood and rice (Dirks and Poole, 2022; 
Melado-Herreros et al., 2022; Savoia et al., 2020; 
Srivastava and Mishra, 2022). NIR spectroscopy has 
been successfully applied for the qualitative identifica-
tion and quantitative analysis of shellfish, which can 
quickly estimate the moisture and glycogen content 
in eastern oysters (C. virginica; Guévélou and Allen, 
2016), classify healthy Tegillarca granosa and Tegil-
larca granosa contaminated with heavy metals (Cu, 
Cd, Pb, Zn; Chen et al., 2015), quantitatively detect 
bivalve protein, lipid and glycogen composition (Bart-
lett et al., 2018), estimate the heritability of meat com-
position traits of Pacific oyster gold-shell strain(Wan 
et al., 2020), quantitatively detect marine Parkinworm 
infection levels in eastern oysters (Guévélou et al., 
2021), and rapidly detect the mussels contaminated 
with Cd, Zn, Pb and Cu (Liu et al., 2022a; Xiong et 
al., 2022). There are few studies using NIR spectros-
copy to detect DSP toxins contaminated mussels. Liu 
et al. (2022b) initially used NIR spectroscopy to detect 
DSP-contaminated mussels, and the results showed 
the feasibility of NIR spectroscopy to detect DSP tox-
ins in mussels. Although the multilayer perceptron 
model based on first-derivative spectrum preprocess-
ing obtains an optimal classification effect, when the 
imbalance ratio of unbalanced dataset is too large, the 
classification accuracy is not ideal. The application of 
full-spectrum modeling not only involves costly and 
too large computation, but also affects the stability of 

the model. The aim of this study is to evaluate the fea-
sibility of the rapid detection of DSP toxins by NIR 
spectroscopy while minimizing the handling of mussel 
samples.

NIR spectral data contains a lot of information of 
a sample, and in some cases, part of it is irrelevant 
or redundant. When the learning model faces a large 
number of input features, the prediction performance 
will decline. There it is necessary to select the charac-
teristic wavelength most relevant to the subject of the 
research. To obtain optimal prediction accuracy, the 
wavelength selection algorithm selects as few wave-
lengths as possible, because the less data there is to be 
analyzed, the faster the model is learned. Nowadays, 
many wavelength selection algorithms have been pro-
posed (Raghavendra et al., 2021). Here a new calcula-
tion method – the Phase diagram (PHADIA) − is used 
to compress the spectral data of shellfish toxin sam-
ples, which can rapidly detect mussels contaminated 
with DSP toxins.

In practical applications of DSP toxin detection, 
the number of DSP toxins contaminated mussels is 
lower than that of healthy mussels. Traditional clas-
sification models usually assume that the training 
samples are evenly distributed in inter classes. Train-
ing the models thus requires a sufficient number of 
healthy mussel samples and corresponding DSP toxin-
contaminated mussel samples. However, it is difficult 
to obtain enough contaminated samples to calibrate 
the detection model in practice, and the number of 
healthy and contaminated mussels is always unbal-
anced in the real environment. Without considering 
the imbalance problem, the classification algorithm fa-
vors most classes, i.e. the classifier may classify most 
of the samples as healthy samples. As a result, it is 
important to find a solution for unbalanced datasets. 
Fuzzy support vector machine (FSVM; Lin and Wang, 
2002) is a classification method based on traditional 
support vector machine (SVM). It has shown optimal 
processing ability on unbalanced data, but the clas-
sification effect is obviously different under different 
imbalance ratios. To this end, an improved fuzzy sup-
port vector machine (IFSVM) algorithm is introduced 
to distinguish healthy mussels and DSP-contaminat-
ed mussels, aiming to solve the classification problem 
of sample imbalance in rapid nondestructive detec-
tion of shellfish toxins.
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MATERIALS AND METHODS

Preparation of mussel samples
The mussels were purchased from Dongfeng Seafood 
Market, Zhanjiang, China. Mussels of similar sizes 
were selected and domesticated in plastic containers 
to adapt to the experimental environment. After 3 days 
of acclimation, mussels with higher vitality were se-
lected for subsequent tests. The mussels that were se-
lected were then transferred into two 119 cm × 108 cm 
× 32 cm plastic containers. Each water tank was filled 
with 80 L seawater, with a salinity of 30‰ and a tem-
perature of 26°C. The daily feeding concentration of 
mussels in the experimental group was 7.3×109 cell/L 
of Proorocentrum lima, and the mussels in the con-
trol group were fed with 109 cell/L of photosynthetic 
bacteria every day. The feeding amount of Prooro-
centrum lima and photosynthetic bacteria was deter-
mined through preliminary experiments to maintain 
the healthy state of mussels.

In the experiment, the seawater in the breeding 
pool was continuously inflated to keep the mussels 
in optimal physiological condition. The seawater was 
replaced every 24 hours to keep the living environ-
ment of mussels. The experiment lasted for 6 days to 
accumulate DSP toxins in mussel samples, and a total 
of 240 samples (120 samples in each group) were col-
lected for spectrum collection.

Obtaining spectra of mussel samples
The NIR spectroscopy of each mussel sample was ob-
tained by using the NIR spectroscopy measurement 
system (Fig. 1) built by the laboratory. The system 
consists of a NIR spectrometer, a halogen light source, 
a Y-shaped optical fiber, a USB data line, an adjustable 
displacement platform and a computer. The NIR spec-
trometer model is SW2520-050-NIRA, produced by 
OtO Optoelectronics Co., Ltd. in Taiwan, China. The 
NIR spectroscopy includes 114 wavebands, ranging 
from 950 nm to 1700 nm, with an interval of 6.5 nm. 
Before collecting the NIR spectroscopy of the mus-
sels, black-and-white correction was conducted to re-
duce noise (Liu et al., 2022c).

Taking the mussels from the seawater container, the 
fiber optic probe was positioned directly on the center 
surface of the mussels for spectral measurements. The 
spectrum of each sample is the average of three scans 

in reflection mode. The spectral data of the sample is 
acquired via SpectraSmart software.

After spectrum collection, samples of DSP-con-
taminated mussels in the experimental group were de-
tected for DSP content using the LC-MS/MS method, 
and the detection results showed that the DSP content 
was 35 μg/kg.

Band selection algorithm
There is a large amount of interference and invalid in-
formation in the near-infrared spectral data, and it is 
necessary to select the most relevant information for 
DSP toxin detection. In this study, the PHADIA band 
selection algorithm based on model cluster analysis 
(Li et al., 2017) was applied to find the optimal subset. 
The flowchart of PHADIA band selection algorithm 
based on model cluster analysis is shown in Figure 2.

The PHADIA algorithm uses two metrics to evalu-
ate the predictive performance of variables and pro-
ject them into four regions in a two-dimensional plot, 
named phase plots. The main steps are as follows:

Given a spectral dataset (X, y), let X be a matrix 
of n × p, the rows contain n samples, and the columns 
contain p-dimensional vectors. y is a vector of n × 1, 
representing the classification label of each sample, 
with a value of 1 or −1.
1. Sub-dataset sampling of variable space. At each 

sampling, Q in the p variables is randomly sam-
pled to produce a sub-dataset of n × Q. This pro-
cess is repeated N times to obtain N sub-datasets, 
denoted as (Xsub, y), i = 1, 2, …, N. The choice of 

5 3 4 1 2 

Jiang_Fig_1.pdf   1   14.06.2023   19:16:42

Fig. 1. Schematic diagram of NIR spectroscopy system:  
1 – adjustable shifting platform, 2 – halogen light source, 
3 – Y-shaped optical fiber, 4 – spectrograph, 5 – computer
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Q value depends on several factors, such as sample 
size and computational cost. Here Q is optimized 
by cross-validation.

2. Establishment of SVM model. SVM classi-
fier is used to build N sub-models, and the cor-
responding prediction error is recorded. The 
performance of each model is evaluated with 
5-fold cross-validation.

3. Statistical analysis of calculating phase diagram 
prediction error. In order not to lose the general-
ity, the i-th variable is used as an example to illus-
trate the process of calculating the phase diagram. 
The N SVM sub-models in (2) are divided into 
groups A (the model containing the i-th variable) 
and B (the model containing the i-th wavelength 
variable). Based on these two sets of prediction 
error data, the corresponding mean and standard 
deviation are calculated, which are expressed as 
MEANA, SDA, MEANB and SDB, respectively. Fi-
nally, the predictive power of the i-th variable is 
evaluated by calculating two statistics.

The first statistic is defined as the difference between 
MEANi,A and MEANi,B, which is calculated as follows:

 DMEANi = MEANi,B – MEANi,A (1)

If DMEANi > 0, it indicates that the model contain-
ing the i-th variable has better predictive performance 
and vice versa. To determine the difference between 
the mean error values of group A and group B models, 
p is calculated using the nonparametric Mann-Whitney 
U test, combined with DMEAN, to determine whether 
the variables can significantly improve the prediction 
performance.

Another statistic is defined as:

 DSDi = SDi,B – SDi,A (2)

If DSDi > 0, it indicates that the model containing 
the i-th variable has better stability.

For each variable, based on the values of DMEAN 
and DSD, a two-dimensional plan diagram, named 
a phase diagram, is drawn, which visually displays the 
predicted performance of all variables in one view. The 
phase diagram is shown in Figure 3, and all variables 
are projected into four regions. The peak “1” of each 
region indicates the prediction error distribution of the 
model containing the variable, and the peak “0” indi-
cates the prediction error distribution of the model that 
does not contain the variable. In phase 1, DMEAN > 0 
and DSD > 0 can not only improve the performance of 

Begin 

Spectral data (n samples, p variables)

Monte Carlo sampling generates N sub-datasets containing Q variables 

Tune the initialization parameters N and Q 

SVM is used to establish a sub-model to obtain the prediction error 

The importance of containing and excluding variable i is evaluated 

based on the prediction error phase diagram, I = 1, 2, …, p 

Calculate the statistics DMEAN and DSD for the prediction 

The optimal subset of variables is obtained by cross-validation method 

End 

Fig. 2. The flowchart based on the PHADIA algorithm
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the model (DMEAN > 0), but also reduce the predic-
tion deviation (DSD > 0), which is called the infor-
mation variable. In phase 2, DMEAN > 0 and DSD 
< 0 can improve the performance, but at the cost of 
increasing variance, which is not as good as the vari-
able in phase 1. In phase 3, DMEAN < 0 and DSD > 0  
decreases the performance of the model and reduces 
the variables of the prediction. In phase 4, DMEAN < 0  
and DSD < 0 not only reduces the performance of the 
model, but also increases the prediction error.

To establish whether the PHADIA method could ef-
fectively filter the characteristic waves, the DMEAN of 
each band with the value Q is drawn, as shown in Figure 
4. It can be seen that in all the Q values, the DMEAN 
value of useful information variables is the highest and 
obviously greater than zero. Conversely, the DMEAN 
values of the noise and interference variables are ran-
domly concentrated around zero (the red dotted line in 
Figure 4 separates the informational wavelength vari-
able from the other wavelength variable). It shows that 
the PHADIA method can screen out the wavelength 
variables that distinguish DSP contamination from 
healthy samples, and is robust with regard to Q values.

IFSVM classification model
In many machine learning methods, SVM has obvious 
advantages in complex nonlinear and high-dimension-
al spatial classification. However, the classification 
effect of traditional SVM on unbalanced datasets is 
not ideal. The SVM algorithm is biased towards the 
classification accuracy of most classes, while the clas-
sification effect is often poor on minority classes. In 
recent years, Lin and Wang (2002) proposed an FSVM 
method that applies fuzzy mathematics to SVM to 
overcome the influence of noise on support vectors 
to improve the accuracy of classification.

FSVM algorithm. For two classification problems, 
the supposition is the training set (X,Y) = {(xi,yi), i = 
1, 2, …, n}, where xi is the sample, and yi is the class 
label of xi, yi ∈ {–1, 1}. It is assumed that the first k 
samples are positive samples (i.e. yi = 1, i = 1, 2, …, k), 
and the remaining n – k samples are negative samples 
(i.e. . yi = –1, i = k + 1, k + 2, …, n).

The general form of FSVM for unbalanced data 
classification is expressed as:

 2 2 21
2 1 1,

min k n
i i i ii i kC s C s

 
     

      (3)

s.t. yi(ω
TΦ(xi) + b) ≥ 1 – ξi, ξi ≥ 0, i = 1, 2, …, n

where Φ(xi) is the nonlinear mapping; ξi(i = 1, 2, …, n)  
is the relaxation variable; C+ and C – are the penalty 
factors of positive and negative samples, respective-
ly, indicating the imbalance between the two classes;  
si

+ and si
– are the membership functions of positive and 

negative samples respectively, indicating the impor-
tance of the sample in its class.

Design of FSVM fuzzy membership function. Lin 
and Wang (2002) defined the fuzzy membership func-
tion as:
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δ is a small positive number to ensure that the fuzzy 
membership is greater than 0. However, when the dis-
tribution of the dataset is uneven, the method is like-
ly to train the noise as normal positive and negative 

Fig. 4. DMEAN values of mixed datasets of DSP-contaminated samples and healthy samples at different Q values
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classification samples, resulting in a decrease in the 
overall classification accuracy of the algorithm.

To effectively reduce the impact of noise contained 
in the sample set and better solve the problem of un-
balanced classification of the dataset, when designing 
the fuzzy membership function, the penalty factor is 
considered in detail, as are the influence of the dis-
tance between the training sample and its class center, 
the tightness around the sample, and the amount of in-
formation of the sample.

IFSVM. According to the K-nearest neighbor crite-
rion, the compactness around the sample is defined as 
follows:

  
   

1
j iKi i jk x N xD x x 

 
  , i = 1, 2, …, n (6)

NK
+(–)(xi) is the set of K-near neighbors of the i-th 

sample of the positive (negative) class. Obviously, 
the smaller the value of Di

+(–) of a sample, the greater 
the possibility that the sample belongs to the positive 
(negative) class.

The samples with a large amount of information 
are given a large membership function value. The 
evaluation method of the sample information is shown 
as follows:

     *
i ix x b        , i = 1, 2, …, k (7)

where ω* and b represent the normal vector and 
threshold of the classification hyperplane of tradi-
tional SVM, respectively; φ(xi

+(–)) is the amount of 
information of the i-th positive (negative) sample. It 
is clear that the smaller the amount of information in 
the positive sample φ(xi

+), the larger the correspond-
ing sample information; on the contrary, the larger the 
negative class sample φ(xi

–), the larger the correspond-
ing amount ofinformation.

The membership of IFSVM is defined as follows:
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i = k + 1, k + 2, …, n

where α ∈ [0,1] is the weight which is used to balance 
the importance of the near neighborhood density of the 
sample to the class center and the sample; the meaning 
of δ is similar to δ in Eqs. 4 and 5; M is used to adjust 
the range of fuzzy membership function of all samples, 
M ∈ (0,1]. The smaller the amount of information φi

+ 
of the i-th positive sample, the larger the correspond-
ing sample information. The larger the amount of in-
formation φi

– of the i-th negative sample, the larger the 
corresponding information. E is a balance factor that is 
used to ensure that the range of positive and negative 
class membership values is consistent. It is defined as 
the mean of the influence value of all training samples 
of the positive class divided by the mean of the influ-
ence value of all training sample information of the 
negative class. The formula is expressed thus (10):
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Parameter optimization. To make better use of the 
IFSVM algorithm to classify the actual data, it is nec-
essary to optimize and select the parameters, such as 
δ, α, M, K, and C. In the experiment, the Radial basis 
function (RBF) kernel function is used, and the pa-
rameter γ need to be optimized and selected. Here the 
initial value of δ is selected by multiple experiments. 
δ is 0.0001; the range of α and M are {0, 0.1, …, 1} 
and {0.1, 0.2, …, 1}, respectively. Considering the 
training time of the algorithm, K is set to 6. Accord-
ing to the experimental results obtained by Ganaie and 
Tanveer (2021), when C+/C– is the ratio ((n – k) / k) of 
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the number of the sample of the majority class to the 
minority class, the SVM algorithm can obtain better 
classification results. C+ is set to C(n – k)/k, and C– is 
C(C > 0). The grid search method is used to select the 
penalty factor C and γ core parameters, and the ranges 
of C and γ are {2–1, 20, 21, …, 210} and {2–15, 2–13, …, 
2–1, 20}, respectively.

Evaluation method of unbalanced dataset 
classification
To overcome the disadvantages of single classifica-
tion accuracy, the geometric mean (Gmean) is intro-
duced to reflect the performance of the classifier on 
unbalanced datasets. Gmean is used to characterize the 
classifier’s ability to correctly identify all classes of 
samples in a dataset, which consists of Sensitivity and 
Specificity. Sensitivity measures the degree to which 
positive samples are accurately classified, while speci-
ficity measures the degree to which negative samples 
are correctly classified. Its formula is as follows:

 Gmean Sensitivity Specificity   (11)

Gmean is only high if the proportion of positive 
and negative classes correctly recognized is high. In 
this experiment, Gmean and accuracy are chosen to 
test the performance of unbalanced classification.

Software
ALL the calculations were implemented in Matlab 
2018a and Python 3.11, and on an individual computer 

with an Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz 
1.99 GHz and 16 GB of RAM memory, with the Win-
dows 10 Professional operating system.

RESULTS AND DISCUSSION

Spectral comparative analysis
Figure 5a shows the NIR spectroscopy of DSP-con-
taminated mussel samples and healthy mussel samples 
mixed in the range of 950−1700 nm. Since the samples 
belong to the same species, the spectral curves tend to 
be similar. Figure 5b plots the average spectral curves 
of contaminated and healthy mussels, respectively, to 
show the spectral differences between the two groups 
of samples. In the wavelength range of 950 nm to 1100 
nm, the spectral reflectance values of healthy samples 
are higher than those of DSP-contaminated samples. 
The reflection intensity of DSP-contaminated mussels 
is higher than that of healthy samples in 1150−1630 
nm. In other wavelength ranges, the average spectral 
curves of the two samples almost overlap. This is be-
cause mussels will accumulate DSP toxins in soft tis-
sues when they feed on toxin-producing algae. DSP 
toxins in contaminated mussels are in small quantities, 
and the DSP toxins barely have characteristic peaks in 
the infrared spectrum. Therefore, it is difficult to di-
rectly detect the amount of DSP toxin by the changes 
of spectral curve. Extremely complex chemical and 
enzymatic conversion mechanisms can occur in toxin-
contaminated mussels (Liu et al., 2022c), resulting in 

a b

Fig. 5. Near-infrared spectrum of samples: a – original spectrogram, b – average spectrogram
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differences in the chemical composition of contami-
nated and healthy mussels.

In the near-infrared region, the absorption bands 
of many compounds have spectral signatures. In the 
near-infrared spectroscopy, the overtones and com-
binations of the fundamental vibrations of the O-H, 
N-H, C-H, and S-H functional groups are the most 
significant absorption bands. The chemical composi-
tion of the mussels changes after being polluted by 
the DSP toxin. These changes can produce molecular 
vibration information in the infrared spectral range. 
Spectral information on DSP toxin contamination can 
be obtained indirectly. From Figure 5, it can be seen 
that there are spectral differences between mussels 
contaminated with DSP toxins and healthy mussels 
in specific wavelengths, which is caused by compo-
sitional differences. These differences suggest that 
DSP-contaminated mussels can be detected using NIR 
spectroscopy.

Before building a classification model, the raw 
spectral data needs to be preprocessed to enhance 
the spectral features by making some corrections to 
it. Preprocessing algorithms include methods such as 
first derivative, second derivative, standard normal 
variable transformation, and quadrature signal cor-
rection (Jiang et al., 2016). In this study, orthogonal 
signal correction preprocessing is used to improve the 
accuracy of the classification model.

Determination of PHADIA algorithm parameters
The PHADIA method is used to screen the wavelength 
variable. For the mixed set spectral data of DSP mus-
sels and healthy mussels after pretreatment, the param-
eters of PHADIA mainly included N and Q, and N is 
generally set to 10 000. The choice of Q value depends 
on several factors and optimized by cross-validation, 

and four values of Q, 10, 20, 30 and 40 are tested 
respectively. For each Q, the PHADIA algorithm is 
run 10 times and cross-validation is used to calculate 
the predictive model performance of SVM. Figure 6 
shows the change in 5-fold cross-validation predic-
tion error with the number of wavelength variables se-
lected after running the PHADIA algorithm 10 times 
with different Q values. As shown in Figure 6, when Q 
takes different values, the prediction error is different 
after each operation of the PHADIA algorithm; at Q = 
10, 20 and 40, the prediction wave fluctuates signifi-
cantly. Considering the mean and variance of the pre-
diction error, Q = 30 is optimal, and Q = 30 is selected 
for subsequent experimental variable screening.

Figure 7 shows the phase plot output by the PHAD-
IA algorithm at Q = 30. It is divided into 4 areas, and 
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Fig. 8. Prediction error distribution of wavelength variables corresponding to four regions: a – 
wavelength 1215.2 nm, b – wavelength 1672.67 nm, c – wavelength 1129.01 nm, d – wavelength 

1487.03 nm 
 
 
 
 

 
 

Fig. 9. Distribution of variables selected by the PHADIA algorithm 
 
 

intuitively divides the variables into information vari-
ables (green dots), non-information variables (blue 
dots) and interference variables (red dots). Phase 1 has 
the most informative wavelength variable. As shown 
in Figure 7, the wavelength variable 1672.67 nm 
stands out, indicating that this band has a high predic-
tive value for DSP pollution and healthy mussel clas-
sification. Phase 2 contains fewer informative bands 
and is still being considered for modeling. These 
wavelength variables in phases 3 and 4 are likely to 
degrade the performance of the model, and they are 
eliminated as interfering variables. There are a total 
of 57 wavelength variables with DMEAN > 0 (phase 1 
or phase 2 in Figure 7), of which 27 variables are sig-
nificant (p < 0.05).

To illustrate the differences between the different 
types of variables, a wavelength variable from each 
of the four regions (phase 1: wavelength 1672.67 nm, 
phase 2: wavelength 1487.03 nm, phase 3: wavelength 
1215.2 nm, phase 4: 1129.01 nm) is selected, and their 
prediction error distribution is shown in Figure 8.  

Taking the 1672.67 nm wavelength variable as an 
example, if it is included in the model, it can signifi-
cantly reduce the prediction error, improve the stabil-
ity of the prediction model and reduce the variance. 
The 1672.67 nm wavelength variable is thus a key 
band reflecting the physiological state of DSP toxins. 
In contrast, the variables in Figures 8a and 8c have 
poor predictive performance, because adding them to 
the model reduces the performance of the model.

To establish a streamlined DSP-contaminated mus-
sel and healthy mussel mixed sample dataset classifier, 
all wavelength variables are sorted according to their 
DMEAN values, and a subset of 13 bands are select-
ed using a forward strategy (from large to smallest). 
This is because the top 13 wavelength variables reach 
a minimum prediction error of 0.0462 in cross-vali-
dation, as shown in Figure 6. It can be seen that when 
the model input variables are less than 10, the 5-fold 
cross-validation error decreases significantly with the 
increase of variables, and the error is minimized when 
the variables are 13. As a result, thirteen wavelength 
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variables are finally identified for DSP-contaminated 
mussels and healthy mussel identification. Figure 9 
shows the distribution of the characteristic bands for 
detecting DSP contamination on the spectral curve. 
The characteristic wavelengths screened by PHADIA 
algorithm are 1248.35 nm, 1254.98 nm, 1261.61 nm, 
1274.87 nm, 1281.5 nm, 1294.76 nm, 1301.39 nm, 
1308.02 nm, 1314.65 nm, 1321.28 nm, 1487.03 nm, 
1520.18 nm, and 1672.67 nm respectively. According 
to the literature, protein-related bands were found at 
1470 nm (Liu et al., 2022a), indicating that the band 
selected by the PHADIA algorithm can reflect spectral 
differences.

Comparison and analysis of detection 
performance of DSP toxin-contaminated mussels
This study used the PHADIA method to select feature 
variables and establish a DSP toxin detection model. 
DSP toxin detection is a problem of imbalance data 
classification in practice. To verify the superiority of the 
algorithm proposed in this paper for classifying unbal-
anced data, the IFSVM algorithm is compared with the 
classical algorithms, i.e. SVM and FSVM algorithms. 
All algorithms use 10-fold cross-verification. To re-
duce random effects, the algorithm is run ten times, and 
the final mean is taken as the final result. The experi-
mental results are shown in Figure 10, which shows 
the changes in the Gmean and accuracy of the three 

classification algorithms with the proportion of healthy 
samples and DSP-contaminated samples in the training 
set, respectively. The test set includes 20 healthy sam-
ples and 20 DSP-contaminated samples. The training 
set remains unchanged for 100 healthy samples and re-
duces the number of DSP-contaminated samples from 
100 to 10, 30 fewer at each time.

It can be seen from Figure 10 that the IFSVM meth-
od achieves the optimal effect in Gmean and accuracy 
in each unbalanced proportion of sample sets. Its mean 
value is greater than that of the FSVM and SVM meth-
ods, and the standard deviation is also smaller than 
that of the FSVM and SVM methods. When the im-
balance ratio changes from 100:100 to 100:40, Gmean 
and accuracy do not decrease, but change non-regres-
sively. The maximum Gmean and accuracy appear 
when the imbalance ratio is 100:40, which are 0.9886 
and 98.83%, respectively. The results show that the 
IFSVM method performs better in dealing with un-
balanced datasets. The Gmean and accuracy values of 
the SVM algorithm vary greatly with the proportion 
of healthy mussels and DSP-contaminated mussels, 
that is, the more unbalanced the training samples, the 
worse the detection effect. This is because the SVM 
algorithm does not consider the imbalance between 
healthy mussels and DSP-contaminated mussels, and 
obtains biased results. Although the FSVM algorithm 
takes into account the data imbalance, it only considers 
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the distance from the sample to the center of the class. 
To this end, the algorithm cannot reflect the impor-
tance of the sample well on the unbalanced distribu-
tion of data. The IFSVM algorithm proposed in this 
paper not only considers the distance from the sample 
to the center of the class, but also considers the tight-
ness around the sample and the amount of information 

a b

Fig. 10. Gmean and accuracy of different classification algorithms on data sets with different unbalanced proportions: a – the 
mean and standard deviation of the accuracy, b – the mean and standard deviation of Gmean

of the sample when designing the fuzzy membership. 
It is basically not affected by the imbalance ratio, and 
the detection model proposed in this paper is suitable 
for unbalanced datasets.

However, when the classification accuracy is 
improved, the model parameters that need to be op-
timized by the proposed algorithm also increase. Com-
pared with the SVM algorithm, although the IFSVM 
algorithm requires some additional calculation time 
when designing fuzzy membership, the computational 
complexity is theoretically comparable to that of SVM 
algorithm. Table 1 shows the optimal parameters of 
these algorithms on different unbalanced proportional 
datasets.

CONCLUSION

This study confirms that NIR spectroscopy is a fast, 
reliable and efficient method for the analysis of DSP 
pollution. The characteristic bands selected by the 
PHADIA algorithm can be effective in distinguishing 
healthy mussels and DSP-contaminated mussels. The 
IFSVM method can be used to solve the problem of un-
balanced dataset classification in DSP toxin detection. 
The algorithm can effectively reduce the influence of 
unbalanced data on SVM and improve the accuracy 
of the classifier. Taking Gmean and classification ac-
curacy as performance indicators, the performance of 
IFSVM is better than FSVM and SVM algorithms. The 
influence of PHADIA algorithm parameters and the 
parameters introduced by IFSVM model on detection 

Table 1. Optimal parameters of different classification al-
gorithms on datasets with different unbalanced proportions

Dataset Model
Parameters

C γ α M

100: 100 SVM 22 20 – –

FSVM 24 2–1 – –

IFSVM 23 2–3 0.2 1.0

100: 70 SVM 22 20 – –

FSVM 22 2–1 – –

IFSVM 25 2–11 0.5 0.6

100: 40 SVM 22 20 – –

FSVM 24 2–1 – –

IFSVM 23 2–3 1.0 0.1

100: 10 SVM 22 2–9 – –

FSVM 24 2–3 – –

IFSVM 21 2–5 0.3 0.7

a b  
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performance is analyzed. The optimal parameters of 
the detection model are determined experimentally. 
However, it should be noted that the IFSVM algorithm 
not only improves the classification accuracy, but also 
needs to optimize the parameters. Therefore an effec-
tive parameter selection strategy should be further de-
signed to improve the IFSVM algorithm.
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