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Legumes are nutrient-rich foods and are an important 
source of various types of proteins, including enzymes, 
trypsin inhibitors, and lectins, which are consid-
ered non-nutritional compounds (Sánchez-Mendoza 
et al., 2016). Saponins have a complex structure with 

a hydrophobic steroid nucleus and a hydrophilic part 
composed of monosaccharide units. These structures 
can be considered non-nutritional compounds. In pre-
vious studies, saponins have reduced the absorption 
capacity of metal ions in the gastrointestinal tract, 
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ABSTRACT

Background. Chickpeas are known for their nutritional value, especially their carbohydrate and protein con-
tent. However, they also contain certain non-nutritional compounds that can interfere with the absorption of 
nutrients. Therefore, it is necessary to optimize extraction methods to effectively remove these compounds.
Materials and methods. The objective of this study was to optimize the extraction of saponins and trypsin 
inhibitors in the chickpea variety ‘El Patrón’ by ultrasonication and maceration using response surface meth-
odology. Chickpea samples were treated with two extraction methods under different conditions: maceration 
at 25°C and 50°C for 24 and 48 h and ultrasonication at 25°C and 50°C for 30 and 60 minutes. The saponin, 
trypsin inhibitor and protein content in both the residual soaking water and the chickpeas were evaluated after 
the treatments.
Results. Ultrasonication was more efficient in eliminating undesirable saponins and trypsin inhibitors, with 
a reduction of 30°C to 60%. In addition, a minor loss of less than 1% of soluble protein was observed. These 
findings suggest that ultrasonication is a promising alternative method for processing this legume.
Conclusion. The results indicate that ultrasonication is the most effective method for the removal of non-
nutritional compounds. It is a low-cost and environmentally friendly technology that facilitates the soaking 
of legumes.
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which is fundamental to the enzymatic activity of the 
digestion of various nutrients affecting the growth of 
laboratory animals. In the case of lectins, they can 
produce toxic effects in biological models (Valadez- 
-Vega et al., 2021). Trypsin inhibitors can block the 
absorption and digestion of proteins by inhibiting the 
pancreatic enzymes trypsin and chymotrypsin, leading 
to digestive problems such as pancreatic enlargement 
and growth deficiency (Avilés-Gaxiola et al., 2018). 

The chickpea is considered a significant legume 
due to its economic accessibility, resilience to drought, 
and nutritional value. It is a notable source of protein, 
which comprises up to 20% of its weight, as well as 
carbohydrates and dietary fiber. Additionally, it con-
tains other compounds such as saponins (56 mg·g–1) 
and trypsin inhibitors (21.7 U·mg–1), which are clas-
sified as non-nutritional compounds (Avilés-Gaxiola 
et al., 2018; Kaur and Prasad, 2021; Serventi, 2023). 
Therefore, it is necessary to apply a treatment that al-
lows these compounds to be removed in the process-
ing of chickpeas.

Traditionally, legumes are subjected to a soaking 
process, often at elevated temperatures, depending on 
the type of legume (Coffigniez et al., 2018). Soaking is 
an effective method for reducing the presence of unde-
sirable compounds and enhancing protein digestibil-
ity (Coffigniez et al., 2019). Moreover, it is utilized as 
a pre-treatment for chickpea processing and can take 
up to 48 hours. This procedure upgrades the diges-
tion of proteins and the starch present in the legume 
(Yegrem, 2021). Reducing the soaking time via new 
technologies can increase the efficiency of this process 
and provide a more effective means of removing unde-
sirable compounds from the product.

Ultrasound-assisted extraction enhances the ex-
traction of compounds by reducing the processing 
time, improving compound extraction, and minimiz-
ing energy consumption (Navarro et al., 2018). 

Ultrasound waves are acoustic waves above the 
human auditory threshold and can be classified as 
low intensity-high frequency or high intensity-low 
frequency (Zhu and Li, 2019). The phenomenon of 
cavitation induced by ultrasound leads to localized 
temperature elevation, high shearing forces, and mem-
brane damage in the sonicated matter, thereby enhanc-
ing the extraction of bioactive compounds (Vela et al., 
2021). Additionally, ultrasound application can induce 

lipid oxidation and protein breakdown, leading to in-
creased enzymatic interaction with substrates (Cabal-
lero-Figueroa et al., 2022).

The objective of this work was to apply two extrac-
tion methods during the chickpea soaking process to 
evaluate their effectiveness in eliminating non-nutri-
tional compounds, as measured in both the legumes 
and the residual soaking water collected after treat-
ment. It is speculated that if elevated temperatures dur-
ing soaking are combined with ultrasonication, more 
non-nutritional compounds can be removed from the 
chickpeas.

MATERIALS AND METHODS

Materials
Evaluation of the extraction conditions for the tar-
get compounds from chickpeas
In this research, chickpeas of the variety ‘El Patrón’ 
provided by the National Institute of Forestry, Agricul-
tural and Livestock Research (INIFAP) and obtained 
from Celaya, Guanajuato, from the 2019 crop cycle 
were used. The chickpeas were stored in hermetically 
sealed jars at room temperature until use.

The maceration conditions for the extraction of 
compounds from chickpeas of the variety ‘El Patrón’ 
were 25°C and 50°C for 24 and 48 h. The chickpea 
seeds were placed in containers with water in a 1:5 
ratio (chickpea:water) (Coffigniez et al., 2018). This 
process was carried out without agitation, and the tem-
perature was controlled. Ultrasonication was carried 
out at 25°C and 50°C for 30 and 60 min. The chickpeas 
were placed in water in a 1:5 ratio (chickpea:water) in 
a Cole-Palmer ultrasound bath (Model 8891) (Navarro 
et al., 2018; Yen and Quoc, 2020). The analyses were 
performed on the soaked chickpeas and the residual 
water was obtained after the process.

Analytical techniques
Protein quantification. The protein extract was ob-
tained by weighing 100 mg of chickpeas. Subsequent-
ly, 100 µL of 72% trichloacetic acid and 900 µL of 
distilled water were added, followed by stirring for 
1 min and centrifugation for 30 min at 3000 rpm. The 
supernatant was discarded, and the pellet was washed 
three times with distilled water. Finally, the sample 
was resuspended in water for subsequent analysis. The 
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protein content was determined according to the meth-
od established by Lowry (Lowry et al., 1951) with 
Folin-Ciocalteau reagent (Sigma) and a bovine albu-
min (Sigma) standard curve at concentrations ranging 
from 0.02 to 0.10 mg·mL–1. The results are expressed 
in mg·g–1.

Quantification of saponins. The saponin extracts 
were obtained by taking 100 mg of the sample and sub-
sequently adding 1 mL of distilled water. The mixture 
was stirred for 1 min, then centrifuged at 10 000 rpm 
for 15 min, and the supernatant was separated from 
the pellet. This process was repeated a second time to 
improve the extraction, resulting in a final volume of 
2 mL. The determination was carried out using the ob-
tained supernatant, while the soaking water was taken 
directly. Saponin content was determined by placing 
a ground sample in water with a mixture of acetic anhy-
dride (Meyer) and concentrated sulfuric acid (Meyer) 
in a 1:5 mixture, after which the mixture was allowed 
to rest for 30 minutes. The absorbance was measured 
at 528 nm in a UV‒Vis spectrophotometer (Model 
VE-5600UV, Velab). The quantification was conduct-
ed using a standard curve for saponin (Sigma) with 
concentrations ranging from 0 to 5 mg·g–1 (Guzmán et 
al., 2013). The results were derived from the standard 
curve, factoring in the weight of the chickpeas used, 
and expressed in mg·g-1. 

Trypsin inhibitors. For this assay, 5 g of the sam-
ple were suspended in 25 mL of distilled water and 
mixed for 90 min at 300 rpm. The mixture was cen-
trifuged at 15 000 rpm for 20 min. The soaking water 
was taken directly. Inhibitory activity was evaluated 
by spectrophotometry in an enzymatic assay with 
benzoyl-DL-arginine-p-nitroanilide (BApNA, Sigma) 
as the substrate and the enzyme trypsin (Sigma). The 
variation in absorbance at 400 nm due to the forma-
tion of p-nitroaniline was recorded every 15 seconds 
for 3 minutes (Erlanger et al., 1961; Nagl et al., 2023). 
The results are presented as U·mg–1, where “U” is the 
amount of inhibitor that will inhibit one unit of trypsin 
activity.

Statistical analysis
For this experiment, a full factorial design with two 
factors at two levels (22) was employed with three rep-
lications of the central point; for the maceration treat-
ment, temperatures of 25°C and 50°C were applied for 

24 h and 48 h, while for the ultrasonication treatment, 
temperatures of 25°C and 50°C were applied for 30 
and 60 min. The proposed design was assessed us-
ing Design-Expert software, version 7.0 (DX7) (Stat-
Ease, Minneapolis, MN, USA) The response variables 
for both treatments were the saponin content and 
trypsin inhibitor content in the soaking water and in 
the chickpeas, and the results were evaluated by analy-
sis of variance (ANOVA).

RESULTS AND DISCUSSION

Effect of maceration and ultrasonication 
extraction conditions on saponin content in 
chickpeas of the variety ‘El Patron’
Chickpea seeds treated by maceration (Fig. 1A) for 48 h  
had a lower concentration of saponins, with an aver-
age of 71.58 mg·g–1, than chickpeas treated for 24 h, 
with a value of 76.45 mg·g–1, and the difference was 
significant (p ≤ 0.05). Chickpeas treated by macera-
tion at 50°C lost an average of 21% of their saponins 
relative to untreated chickpeas, while those treated 
at 25°C lost 16% of their saponins, showing a sig-
nificant difference (p ≤ 0.05) with respect to soaking 
temperature. The amount of saponins in the residual 
soaking water after treatment reached 12.01 mg·mL–1. 
The removal of as much as 36% of the initial sapo-
nin content of chickpeas has been reported in other 
studies (Antoine et al., 2022). Additionally, saponins 
are glycosides with polar and nonpolar components, 
which allows their partial extraction in water or more 
complete extraction in ethanol:water mixtures (Yen 
and Quoc, 2020). Among the ultrasonicated chickpea 
seeds (Fig. 1B), no significant difference (p ≥ 0.05) 
was found between samples treated for different times 
or at different temperatures; the average saponin con-
tent in the chickpeas was 85.91 mg·g–1, correspond-
ing to a reduction of up to 6%. Maceration resulted 
in 5% greater extraction of saponins compared to that 
obtained by ultrasonication, which was due to the re-
tention of the chickpeas in water. Although saponins 
have a nonpolar part within their chemical structure, 
they also contain sugars, which allows them to be sol-
ubilized in water (Zhou et al., 2023). However, it is 
important to consider that the treatment time for ultra
sonication is shorter than that for maceration, which 
can significantly reduce the processing time (Wang 
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et al., 2022). Although the most commonly used sapo-
nin extraction method is maceration (approximately 
37%), ultrasonication is also used in 14% of cases, 
which suggests that it may be a feasible alternative 
(Cheok et al., 2014). At present, ultrasound treatment 

is utilized to eliminate non-nutritional compounds 
from cereals and legumes, demonstrating its efficacy 
(Caballero-Figueroa et al., 2022). The integration of 
temperature with this treatment enhances the soaking 
process, resulting in the softening of chickpea seeds 
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Fig. 1. Effects of maceration (A) and ultrasonication (B) on the saponin content in chickpeas; effects of macera-
tion (C) and ultrasonication (D) on the activity of trypsin inhibitors in chickpeas; and effects of maceration (E) 
and ultrasonication (F) on the protein content in chickpeas
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and an improvement in the digestibility of proteins 
and starches (Godrich et al., 2023; Mazı et al., 2023; 
Youshanlouei et al., 2022).

Effect of maceration and ultrasonication 
extraction conditions on the content of trypsin 
inhibitors in chickpeas of the variety ‘El Patrón’
Regarding trypsin inhibitors in chickpeas treated by 
maceration (Fig. 1C), no significant difference was 
observed (p ≥ 0.05) as a function of the processing 
time. However, temperature did affect trypsin inhibi-
tor activity, with a 32% reduction in activity in the 
chickpeas treated at 50°C, while those treated at 25°C 
showed a 20% decrease in activity. In the residual 
soaking water, the average activity of trypsin inhibi-
tors was 6.72 U·mg–1, indicating that these compounds 
were present in the soaking water.

In this study, temperature, but not soaking time, af-
fected trypsin inhibitors. This phenomenon is related 
to the sensitivity of the inhibitors to high temperatures 
since, as proteins, they are susceptible to degradation. 
A study conducted on autoclaved chickpeas revealed 
that temperature elevation could suppress about 
83.87% of the activity of trypsin inhibitors (Ruiz- 
-Zambrano et al., 2023). 

In this study, inhibitory activity was diminished by 
up to 35% compared to unsoaked chickpeas. The mac-
eration-induced soaking process effectively leaches 
trypsin inhibitors, as the water utilized disperses the 
protein fraction, thereby aiding in the denaturation of 
the proteins (Yegrem, 2021). In a separate study ex-
amining the impact of maceration on green and red 
lentils, it was observed that the soaking process and 
subsequent drying led to a reduction in trypsin inhibi-
tory activity by 52.2–80.1% (Mazı et al., 2023).

In the ultrasonication treatment (Fig. 1D), the soak-
ing temperature and time did not affect trypsin inhibi-
tor activity, with an average value of 14.85 U·mg–1 for 
chickpeas treated at 50°C and 17.1 U·mg–1 for chick-
peas soaked at 25°C. The results for the residual soak-
ing water indicated that ultrasonication removed an 
average of 39% of the trypsin inhibitors in the chick-
peas. This result may be due to the fact that increasing 
the temperature during the soaking process increases 
the transfer of compounds; moreover, inhibitors can 
degrade at high temperatures, thus decreasing their ac-
tivity. Another study found that the activity of trypsin 

inhibitors in white chickpea flour was reduced by up to 
59% after heat treatment at 112°C for 15 min (Avilés- 
-Gaxiola et al., 2018).

Ultrasonication may be more effective at inactivat-
ing trypsin inhibitors due to the phenomenon of cavi-
tation, which generates shear within the system and 
can break certain protein structures, as in the case of 
inhibitors. The combination of ultrasound and tem-
perature has been observed to reduce the inhibitory 
activity of trypsin. This effect may be attributed to an 
alteration in the disulfide bonds, leading to changes in 
the secondary structures of the trypsin inhibitor (Van-
ga et al., 2020).

Effect of maceration and ultrasonication 
extraction conditions on the protein content in 
chickpeas of the variety ‘El Patron’
Chickpeas are considered a high-quality food due to 
their nutritional characteristics, especially their pro-
tein content, which can range from 20% to 22% (Kaur 
and Prasad, 2021). During the soaking process, losses 
of nutrients, specifically proteins, can occur. The soak-
ing process removes not only components considered 
undesirable, such as saponins and trypsin inhibitors, 
but also water-extractable nutrients. Some studies re-
port a decrease in proteins and amino acids such as 
cysteine, methionine and tyrosine (Ruiz-Zambrano et 
al., 2023). In this study, the maximum loss of chickpea 
proteins into the soaking water varied according to the 
method and conditions.

In the case of soaking by maceration (Fig. 1E), the 
maximum loss of proteins was 16%, and the effect 
varied depending on the temperature of the process; 
for ultrasonication (Fig. 1F), the loss was 15%. It is 
important to note that this protein fraction corresponds 
mainly to albumin since albumin is soluble in water 
and accounts for between 10% and 20% of the protein 
in chickpeas, consistent with Kaur and Prasad (2021).

Response analysis of soaking experiments of the 
chickpea variety ‘El Patron’
According to the equations in Table 1, the optimized 
conditions for maximizing the removal of saponins 
and trypsin inhibitors by maceration were 50°C for 
48 h, while for ultrasonication, the optimal conditions 
were 50°C for 60 min. Espinoza et al. (2021) extract-
ed saponins from quinoa using ultrasound and found 
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the greatest extraction of compounds at 12 min, while 
(Yen and Quoc, 2020) observed that an increase in 
temperature combined with ultrasound facilitated the 
extraction process. In both methods, increased tem-
perature facilitated the extraction of components into 
the soaking water, thus reducing their content in the 
chickpeas.

CONCLUSIONS

The treatment of chickpeas with ultrasonication com-
bined with elevated temperature (50°C) eliminated 
a higher concentration of trypsin inhibitors, although 
it did not significantly affect the content of saponins in 
the chickpea seeds. In contrast, although maceration 
reduced the saponin content in chickpeas to a greater 
extent (4% more than ultrasonication), this method has 
several drawbacks, such as a longer processing time 
compared to that of ultrasonication. Both methods 
caused a loss of protein from the chickpeas, which sug-
gests that unwanted components were removed along 
with important nutrients during the soaking process. 
It is concluded that maceration may be more effective 
in eliminating unwanted components in chickpeas, but 
ultrasonication, as a technology applied in the process-
ing of legumes, could be a viable alternative due to its 
ability to reduce the processing time.
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Table 1. Equations obtained from the experimental design by DX7 (in codified terms) applied to the 
soaking methods of the chickpea variety ‘el Patrón’

Maceration Ultrasound

Saponins in water = 11.29 + 3.74·A Saponins in water = 8.18 + 2.74·A

Trypsin inhibitors in water = 6.04 + 1.59·A Trypsin inhibitors in water = 7.22 + 1.23·A

Protein in water = 9.40 + 5.52·A Protein in water = 9.40 + 1.70·A

Chickpea saponins = 74.02 – 2.92*A – 2.44·B Chickpea saponins = 85.67

 Chickpea trypsin inhibitors = 16.13 – 1.41·A Chickpea trypsin inhibitors = 16.00 

Chickpea protein = 80.48 – 3.87·A Chickpea protein = 74.27

A – temperature; B – time.
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