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With the growth of the global population and the 
development of the food industry, food security has 
become a priority for governments and international 
organizations worldwide. As one of the world’s major 
food crops, wheat yield and quality are directly related 
to food safety and the stability of national economies. 

However, wheat freshness is influenced by various 
factors that affect its quality and nutritional value. 
These factors include harvest conditions, storage envi-
ronment (temperature, humidity and ventilation), and 
duration of storage. Such factors can lead to biochemi-
cal and microbial changes in wheat, altering its color, 
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ABSTRACT

Background. Accurate detection of wheat freshness is important for ensuring the quality and safety of wheat 
products, thereby protecting the health and interests of consumers. 
Material and methods. This study integrates biophoton emission technology with advanced deep learning 
frameworks to transform the process of wheat freshness assessment. Leveraging the powerful feature extrac-
tion capabilities of the ResNet architecture, we employ a multi-scale framework integrated with the Gaussian 
Context Transformer (GCT) attention mechanism. The MS-GCT-ResNet method presents a groundbreaking 
approach that not only enhances the accuracy and efficiency of wheat freshness discrimination but also dem-
onstrates the potential for combining biophysical phenomena with cutting-edge Artificial Intelligence (AI) 
technologies for precision agriculture and food quality control.
Results. This model enhances detection accuracy and adaptability, offering a powerful technique for the rap-
id and precise evaluation of wheat freshness. Its effectiveness is validated using years of wheat sample data. 
Based on the experimental results, MS-GCT-ResNet achieves a recognition accuracy of 93.6%. Compared 
with traditional CNN and ResNet models, the recognition accuracy increases by 1.9% and 1.1%, respectively.
Conclusion. MS-GCT-ResNet is a highly promising, non-invasive, and efficient technological advancement 
capable of quickly and accurately assessing wheat freshness. This method holds immense potential to revo-
lutionize the agriculture and food processing industries. 
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flavor, texture, and nutritional composition. Ensuring 
the freshness of wheat is crucial not only for maintain-
ing consumer satisfaction but also for preventing food 
waste and upholding food safety.

Accurate detection of wheat freshness is essential 
for several reasons. First, it helps ensure the quality 
and safety of wheat products, protecting consumer 
health and interests. Second, it provides guidance for 
manufacturers and processors to manage raw materials 
and optimize production processes. Third, it supports 
the development of standardized, automated systems 
for monitoring wheat freshness, reducing human error 
and boosting efficiency. Finally, it contributes to in-
novations in cereal science and technology. Therefore, 
accurate and timely freshness testing preserves the 
nutritional integrity and palatability of wheat products 
while also helping to reduce foodborne illnesses and 
protect public health. Our goal is to strengthen global 
food security through innovative and effective food 
quality assurance measures.

Advancements in wheat freshness detection have 
enabled rapid, non-destructive, and reliable assess-
ment of grain quality. Various innovative techniques 
have been explored to simplify the process and ensure 
accurate freshness evaluation. Several methods for de-
tecting wheat freshness have been developed, includ-
ing sensory evaluation (Zhang et al., 2016), chemical 
analysis (Cao and Cai, 2018; Ma et al., 2013; Ren et 
al., 2019; Wang et al., 2009), and instrumental tech-
niques (Liu et al., 2010; Ge et al., 2015; Wu et al., 
2019; Zhao et al., 2012). Sensory evaluation assesses 
the appearance, texture, and aroma of wheat samples, 
while chemical analysis measures specific compounds 
related to wheat freshness. Instrumental techniques 
such as near-infrared spectroscopy (NIRS), Terahertz 
Time-Domain Spectroscopy (THz-TDS), and elec-
tronic nose technology have also been employed to 
detect changes in wheat quality during storage. How-
ever, further research is still needed in this area.

Biophoton emission (BPE) is a fascinating phe-
nomenon that occurs naturally in various living organ-
isms, including plants, animals, and microorganisms. 
The basic principle of BPE is that biological systems 
spontaneously emit low-intensity, ultra-weak pho-
tons as a result of biochemical reactions within cells, 
typically related to metabolic processes and cellular 
communication. These emissions are extremely weak 

and difficult to detect with traditional methods, requir-
ing high-sensitivity detectors such as photomultiplier 
tubes or intensified charge-coupled devices (ICCDs).
The application of BPE spans multiple disciplines, 
offering a unique window into the inner workings of 
biological systems. With the continuous development 
of biophotonics technology, its application in grain 
quality analysis has gained increasing attention. Wu et 
al. (2015) studied the delayed luminescence of wheat 
samples from different varieties and years. Their re-
sults indicated differences in ultra-weak luminescence 
intensity between wheat samples of the same variety, 
depending on the production year and vitality. Liang 
et al. (2014) successfully achieved accurate identifica-
tion of four wheat varieties by combining ultra-weak 
self-luminous light signals with power spectrum fea-
ture analysis. Gong et al. (2020; 2021) used biopho-
tonic instruments to test the biophotonic signals of five 
wheat samples from different storage years. Based on 
an improved multi-scale permutation entropy algo-
rithm for feature analysis of the photon signals, they 
found that the permutation entropy values of photon 
counting in wheat samples increased with longer stor-
age time.

The main methods used in biophotonics involve 
using biophotonic testing equipment to collect the 
number of photons emitted by experimental samples 
over time, which is essentially one-dimensional time-
series data. The data processing methods for collected 
biophotonic data can be classified under Time Series 
Classification (TSC). Time-series data is a sequence of 
data points arranged in chronological order, typically 
reflecting the changes in a system or process over time. 
Time series classification involves categorizing these 
time-series data into different categories or groups 
based on their characteristics. Existing research typi-
cally extracts statistical or frequency domain features 
from the collected one-dimensional time-series data, 
followed by classification using various machine 
learning algorithms, such as Support Vector Machines 
and BP Neural Networks for discrimination (Zhang et 
al., 2023). However, it remains uncertain whether the 
extracted features are optimal for determining wheat 
quality or if alternative features could enhance the bio-
photon data analysis.

Deep learning has been widely used in diverse do-
mains such as image recognition, and natural language 
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processing. Convolutional Neural Networks (CNN) 
and ResNet (Prince, 2023) are the most prevalent deep 
learning models. During the deep learning process, 
feature extraction involves autonomously learning and 
identifying useful features from large datasets through 
a multi-layer network structure, greatly improving per-
formance in various AItasks. Their strong feature ex-
traction and pattern recognition capabilities enable these 
models to handle one-dimensional time-series data, 
such as electroencephalogram (EEG) analysis (Li et 
al., 2019), and anomaly detection (Huang et al., 2022).

The ResNet architecture serves as a cornerstone for 
feature extraction and classification, providing a reli-
able foundation. Given that wheat biophotonic data 
is one-dimensional time-series data with inherent se-
quence complexity, we introduce innovative mecha-
nisms, including the Gaussian Context Transformer 
(GCT) (Ruan et al., 2021), to enhance the network’s 
ability to learn and emphasize prominent features at 
each layer. This integration promotes a refined learn-
ing process and ultimately improves the model’s 
discriminative abilities. Additionally, this method in-
troduces multi-scale convolutional neural networks 
(CNNs) (Hu et al., 2020) to extract and integrate fea-
ture information across different scales, improving the 
network’s detection accuracy. As a result, we propose 
an innovative MS-GCT-ResNet design – an advanced 
neural network architecture that combines Gaussian 
Context Transformer (GCT) with a multi-scale ResNet 
framework. Experimental results demonstrate that 
MS-GCT-ResNet outperforms traditional diagnostic 
methodologies in determining wheat freshness.

The main contributions are outlined as follows:
1) Innovative Adoption of Biophotonic Technology: 

This study introduces the groundbreaking applica-
tion of biophotonic technology in distinguishing 
wheat freshness, thereby promoting the transition 
of this complex technology from laboratory exper-
iments to tangible real-world scenarios. This effort 
can accelerate technological progress and expand 
the scope of the application of biophotonics.

2) Improved Representational Power Through 
Multi-scale Integration: Recognizing that differ-
ent scales encapsulate complementary information, 
this work incorporates a multi-scale framework 
that enriches the representational capacity of the 
model. By merging features at multiple scales, 

a more comprehensive and descriptive feature set 
is achieved, enabling the model to capture complex 
nuances within the input data with higher fidelity.

3) MS-GCT-ResNet: The MS-GCT-ResNet network, 
a pioneering method that harmoniously integrates 
the residual network architecture with an attention 
mechanism, is presented. This integration enhanc-
es feature extraction capabilities and improves the 
recognition performance of deep learning models, 
creating a new paradigm for increased accuracy 
and efficiency. In this way, MS-GCT-ResNet rep-
resents a significant step forward in deep learning 
for complex pattern recognition tasks.

MATERIALS AND METHODS

Experimental materials and measuring 
instrument
The samples used in the experiment were purchased 
from the grain market, and wheat seeds with full and 
uniform grain were selected. From 2020 to 2023, 100 
wheat samples were selected annually as experimental 
samples, with each sample weighing approximately 
(5.00 ±0.02) g. For measurement, the BPCL-ZL-TGC 
ultra-weak photon measuring instrument was used, as 
shown in Figure 1. During the measurement process, 
preprocessing of the samples is required. The preproc-
essing steps include:
1) washing: The wheat samples undergo a rigorous 

washing process three times with distilled water to 
ensure cleanliness.

2) drying: The samples are then dried using an elec-
tric drying oven until the moisture content reaches 
a precise level of (12.5 ±0.2)%, ensuring consist-
ency and accuracy.

After preprocessing, photon data can be collected 
from the sample using the measuring instruments. The 
main procedure is as follows:
1) initiate the BPCL-ZL-TGC ultra-weak photon 

measuring instruments
2) ensure that each wheat sample is placed in a dark 

room for 30 minutes, primarily to minimize any 
potential interference from ambient light

3) activate the ‘Collect’ button to start measuring the 
sample for 1000 seconds, with a 1-second interval 
between each measurement
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4) save the accumulated data to disk for subsequent 
analysis, as described in the following section.

Indoor conditions are maintained at a temperature of 
(28 ±2)℃, a measuring temperature of (27.5 ±0.5)℃, 
and a humidity level of (45 ±5)%.

For each one-dimensional biophoton dataset, sam-
ples containing 1000 data points were collected. From 
this, a sampling window of 512 points was selected, 
characterized by a 100-point overlap between consec-
utive samples. This sampling process generates 5 dis-
tinct samples for each dataset. A total of 2000 samples 
were collected in 4 different wheat freshness states, 
with 500 samples evenly distributed each year.

Fig. 1. Block diagram of ultra-weak photon measuring 
instrument

Basic introduction of ResNet
Despite the powerful feature extraction capabilities 
of Convolutional Neural Networks (CNNs), they still 
face some challenges when navigating ultra-deep 
network architectures. As the depth of the network 
increases, the training error initially decreases, reach-
ing a plateau of performance. However, a subsequent 
increase in layers paradoxically leads to the recur-
rence of training errors, a phenomenon widely known 
as the degradation problem. The emergence of Re-
sidual Networks (ResNet) provides a clever solution 
to this dilemma by introducing shortcut connections. 
These connections not only maintain the depth of 
the network but also optimize the gradient propaga-
tion process, significantly enhancing the training and 
convergence of deeper networks. This breakthrough 
is of great significance for solving complex tasks in 
practical applications, including high-precision im-
age classification and large-scale image processing, 
where the depth and efficiency of neural networks are 
crucial.

The core of ResNet lies in the design of its residual 
blocks and Figure 2 is a structural diagram of a re-
sidual block. Each residual block can be represented 
as follows:

 y = F(x, wi) + x (1)

where x is the input to the residual block; y is the 
output of the residual block; F(x, wi) is the residual 
function that represents the learned residual mapping, 
and wi are the weights and bias parameters associated 
with the residual function. The residual block directly 
adds the input x to the output of the residual function 
F(x, wi) through a “shortcut connection” or referred to 
as an “identity mapping,” thereby obtaining the output 
y of the residual block.

Fig. 2. Diagram of the residual block

The overall architecture of ResNet consists of mul-
tiple stacked residual blocks, typically accompanied 
by some convolutional layers, pooling layers (such as 
max pooling layers), and fully connected layers (for 
classification tasks). At the beginning of ResNet, there 
is usually a 7 × 7 convolutional layer and a max pool-
ing layer to reduce the size of the input image and in-
crease the number of channels. Based on the depth of 
ResNet (e.g., ResNet18, ResNet50, etc.), the network 
is built by stacking multiple residual blocks. Finally, 
the classification results are output through a global 
average pooling layer and a fully connected layer. 
ResNet effectively alleviates the training difficulties 
of deep neural networks through residual learning, 
making it possible to construct deeper networks and 
achieve excellent performance in various computer vi-
sion tasks.
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Basic introduction of attention mechanism
In deep learning-based computer vision tasks, atten-
tion mechanisms (Qin et al., 2021, Wang et al., 2020, 
Woo et al., 2018, Zhao et al., 2018, Zhu et al., 2023) 
are widely applied techniques. These mechanisms au-
tonomously learn to weight certain parts of the input 
feature map, allowing the model to selectively focus 
on the most relevant features in the input image, ulti-
mately optimizing performance in visual tasks.

In CNNs, the feature map is typically represent-
ed as C × H × W, where C represents the number of 
channels in the feature map, and H and W represent 
the height and width of the feature map after feature 
extraction by the convolutional neural network from 
the original image. Spatial attention refers to the at-
tention mechanism that focuses on spatial features in 
the H×W dimensions. In contrast, channel attention 
operates on the channel dimension of the feature map 
by assigning attention weights to the features of each 
channel. The representative model of channel attention 
is the Squeeze-and-Excitation Networks (SENet) (Hu 
et al., 2019). The squeeze-and-excitation architecture 

is shown in Figure 3. It utilizes max pooling for feature 
compression, followed by a fully connected network 
to extract attention features. These attention features 
are then weighted back onto the original feature map, 
completing the calculation of channel attention of the 
original feature map.

However, as pointed out in Ruan et al. (2020), the 
SE module tends to learn a negative correlation be-
tween features. As the difference between the global 
context and the mean increases, the obtained attention 
excitation value decreases. Based on this correlation, 
GCT (Gaussian Context Transformer) is proposed 
to model the global context, where GCT can direct-
ly replace the two fully connected layers in SE with 
a Gaussian function containing the negative correla-
tion. Compared with SE, GCT introduces fewer pa-
rameters and better learns the negative correlation 
between the global context and attention activation 
values, thereby enhancing the expressive ability of the 
model. The basic structure of GCT is shown in Fig-
ure 4. GCT comprises three parts: GCA (Global Con-
text Aggregation), Normalization, and GCE (Gaussian 

Fig. 3. Diagram of SENet

Fig. 4. Diagram of Gaussian Context Transformer
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Context Excitation). The output after GCT can be ex-
pressed as follows:

 
2
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Proposed method
The proposed MS-GCT-ResNet network architecture 
is shown in Figure 5a. Figure 5b shows the detailed 
framework of ResNet with an attention mechanism.

The method operates at three different scales to ex-
tract and enhance feature information.

The first scale begins with obtaining scale infor-
mation from one-dimensional biophoton data through 
an averaging pool. This information is then subjected 
to deeper mining using five ResNet-GCT blocks, each 
equipped with a one-dimensional convolutional layer, 
a batch normalization layer, an activation function 
(ReLU), and a subsequent second convolutional layer. 
In addition, an integral attention mechanism in the 
module enhances the process. The second scale is per-
formed directly, using six ResNet-GCT blocks applied 
directly to the original scale signal for feature extrac-
tion, delving deeper into its characteristics. Compared 
to the first scale, the third scale utilizes max pooling to 

extract scale information from the one-dimensional bi-
ophoton data. Afterwards, it adopts the same configu-
ration of five convolutional blocks to learn and discern 
the feature information embedded in the scale signal. 

The features extracted from these three scales, f1, 
f2 and f3, are then fused to create a comprehensive 
feature set, F.

The fusion process does not follow the typical con-
catenate approach. Instead, it combines the features 
from the three scales along the channel dimension and 
then applies a 1 × 1 convolution to derive the final 
result. The feature map obtained from the feature ex-
traction layer is then forwarded to the fully connected 
layer. After two successive fully connected layers, the 
probability P for each category is calculated using the 
Sigmoid function. The key advantages of the MS- 
-GCT-ResNet are as follows:
a) the feature extraction layer of the network signifi-

cantly enhances the richness and depth of the fea-
ture information garnered from one-dimensional 
biophoton data input, achieved through feature ex-
traction at three different scales

b) based on the attention mechanism, the rich fea-
ture information from this multi-scale structure 

Fig. 5. Diagram of the MS-GCT-ResNet Network
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undergoes a weighted mapping process, thereby 
emphasizing the most prominent features

c) furthermore, the GCT (Global Context Transform-
er) optimizes the bottleneck structure with ResNet 
in the channel attention module, ensuring effective 
cross-channel information interaction while miti-
gating any adverse side effects associated with the 
bottleneck. This optimization can maintain the per-
formance of the model while reducing its overall 
complexity.

The flowchart of the entire experimental process is 
shown in Figure 6, providing a clear and concise dem-
onstration of the experimental procedures.

RESULTS AND DISCUSSIONS

Experiment configuration
To simplify model training and assessment, we sys-
tematically divided the experimental data into a train-
ing set, validation set, and test set in an 8:1:1 ratio. 
In addition, we implemented a rigorous 10-fold cross-
validation strategy to improve the reliability of the ex-
perimental results.

The NVIDIA GeForce GTX 4090 D graphics 
card is utilized for model training, ensuring excellent 

Fig. 6. Flowchart of the experimental procedures

Table 1. Network parameters of the pProposed MS-GCT-ResNet

Scale 2 Blocks Kernel Size/
Stride/Channel Output shape

Input shape 1×512

ResNet-GCT1 3×3/2/64 1×256×64

ResNet-GCT2 3×3/2/128 1×128×128

ResNet-GCT3 3×3/2/128 1×64×128

ResNet-GCT4 3×3/2/256 1×32×256

ResNet-GCT5 3×3/2/256 1×16×256

ResNet-GCT6 3×3/2/512 1×8×512

Scale 1  
(Scale 3) Block Kernel Size/

Stride/Channel Output shape

Max pooling/
Avg pooling

2×2/2 1×256

ResNet-GCT1 3×3/2/64 1×128×64

ResNet-GCT2 3×3/2/128 1×64×128

ResNet-GCT3 3×3/2/256 1×32×256

ResNet-GCT4 3×3/2/256 1×16×256

ResNet-GCT5 3×3/2/512 1×8×512

Final output Shape 1×512
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computational performance. The training plan is care-
fully configured with a batch size of 32 and optimized 
using the Adam algorithm, which is known for its 
exceptional efficiency in gradient descent, thereby 
optimizing the training process. To enhance model 
generalization and alleviate overfitting, a dropout rate 
of 0.5 is strategically implemented, with an initial 
learning rate set at 1e-3. After 10 iterations, the model 
is rigorously evaluated on the validation set to find the 
best weights for the highest accuracy, which helps pre-
vent overfitting to the training data. Table 1 shows the 
network parameters of the proposed MS-GCT-ResNet.

Comparative result with other methods
To thoroughly evaluate the effectiveness of the pro-
posed algorithm, we select a broad range of deep 
learning models (including CNN and ResNet) and tra-
ditional machine learning algorithms (such as KNN, 
SVM, and BP neural networks) as benchmarks for 
classification comparison. This comprehensive evalu-
ation framework enables us to assess the advantages 
and identify potential limitations of the algorithm. Ta-
ble 2 presents the experimental results.

Table 2. Experimental results using different methods

KNN SVM BP CNN ResNet MS-GCT- 
-ResNet

Accuracy, % 81.6 87.2 89.2 91.7 92.5 93.6

As shown in Table 2, the recognition accuracy of the 
three traditional machine learning methods is 81.6%, 
87.2%, and 89.2%, respectively. It is worth noting that 
these traditional algorithms require manual extraction 
of features from the data. Due to the temporal variation 
of the collected wheat photon counts, the data is one-
dimensional time-series data, and there is no unified 
standard for extracting specific features from this data. 
Six key statistical features – median, mean, quartile 
deviation, mean deviation, variance, and coefficient of 
variance – are selected here. The detailed descriptions 
of these statistical features are as follows:

For a set of data x1, x2, …, xn the calculation formu-
las for each statistical feature are as follows:

Mean: The mean is the sum of all values divided 
by the number of values.

 

n
xnx =

i=1

1 ∑ i
 

(3)

Median: The median represents the number that 
happens to be at the center of the dataset when sorted 
in ascending (or descending) order. When the number 
of data points is odd, the median is consistent with the 
middle number. On the contrary, if the dataset contains 
an even number of elements, the median is calculated 
as the average of the two centroids.

Quartile deviation: Quartile deviation is a statisti-
cal metric used to evaluate the dispersion or diffusion 
of data distribution, with a focus on the quartiles as 
key reference points. Quartiles represent the values of 
dividing the sorted dataset into four equal segments, 
each containing 25% of the observations. Specifically, 
the first quartile (Q1, or 25th percentile) marks the 
boundary between the lowest 25% and the remaining 
75% of the data. The second quartile (Q2, also known 
as the median or 50th percentile) divides the dataset 
into two halves, and the third quartile (Q3, or 75th per-
centile) separates the top 25% from the lower 75%. 
This measure provides insight into the variation within 
the data, particularly in the interquartile range.

QD =
Q3 – Q1

(4)
2

This formula calculates half the distance between 
the third quartile (Q3) and the first quartile (Q1), 
thereby providing a measure of the dispersion within 
the middle 50% of the data.

Mean deviation: The mean deviation is the arith-
metic mean of the absolute deviations between the me-
dian in a sequence and its arithmetic mean. It serves as 
a measure to determine the degree of deviation of the 
values in a sequence and its mean.

AD =
Σn

i=1 |xi – x̄|
(5)

N

Variance: Variance is a statistical measure used to 
quantify the average squared deviation of each data 
point from the mean, serving as an indicator of data 
dispersion or diffusion. On the other hand, standard 
deviation is the square root of this variance, providing 
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a more intuitive and readily comprehensible measure 
of the same dispersion.

 n (xns =
i=1

1 ∑ i – x)2√  (6)

Coefficient of Variation: The Coefficient of Vari-
ation (CoV) is a dimensionless metric that quantifies 
the relative dispersion of data by comparing the stand-
ard deviation to the mean. It serves as a valuable tool 
for assessing the variability of data, independent of its 
scale or units of measurement.

CV =
si (7)
x̄

However, further experimental validation is need-
ed to determine which specific features will lead to an 
improvement in recognition performance.

Fig. 7. Experimental results using different methods

Deep learning algorithms have been used to ac-
complish many tasks in recent years because they can 
automatically extract discriminative feature informa-
tion from data for classification. From the experimen-
tal results, the accuracy of CNN algorithm and ResNet 
method is 91.7% and 92.5%, respectively, while the 
accuracy of MS-GCT-ResNet is 93.6%, showing 
improvements of 1.9% and 1.1%, respectively. This 
also demonstrates the effectiveness of the proposed 

algorithm. Figure 7 shows the experimental results of 
different methods.

Ablation study
In this section, we verify the impact of incorporating 
multi-scale information and attention mechanisms 
separately into the ResNet network on the final results. 
The results are shown in Table 2, where MS-ResNet 
represents the addition of multi-scale data information 
to ResNet, and GCT-ResNet indicates the enhance-
ment of ResNet with an attention mechanism. Table 3 
shows the ablation experimental results.

Through ablation experiments, we find that the 
performance improves by 0.6% and 0.8%, respective-
ly, after incorporating multi-scale information and the 
attention mechanism. When both of these improve-
ments are applied together, performance improves by 
1.1%, which fully demonstrates the effectiveness of 
introducing these two mechanisms into the network. 
Additionally, the recognition accuracy of ResNet with 
SENet is only 92.6%, which also verifies that GCT 
outperforms SENet in the attention mechanism.

Table 3. Ablation experimental results

ResNet MS- 
-ResNet

SENet- 
-ResNet

GCT- 
-ResNet

MS-GCT- 
-ResNet

Accuracy, % 92.5 93.1 92.9 93.3 93.6

CONCLUSION

To evaluate wheat freshness, cutting-edge biophoton 
emission technology is seamlessly integrated with the 
powerful capabilities of deep learning frameworks. 
At the core of this innovative strategy is the Multi-
scale ResNet with Gaussian Context Transformer 
(MS-GCT-ResNet). This model effectively leverages 
the robust feature extraction capabilities of ResNet, 
augmented by the groundbreaking attention mecha-
nism of GCT. This synergetic fusion enhances detec-
tion accuracy to new heights and improves the model’s 
adaptability, paving the way for swift, reliable, and 
non-intrusive quality assessments of grain stores.

The inherent non-destructive nature of this tech-
nology makes it remarkably efficient, with signifi-
cant practical value and broad applications. Rigorous 
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testing on wheat samples over multiple years confirms 
the method’s effectiveness, yielding compelling re-
sults that surpass existing models in both accuracy and 
stability. The findings indicate that the proposed tech-
nology provides a non-destructive, efficient, and rapid 
means of assessing wheat freshness, with the potential 
to reshape the industry landscape by introducing a new 
era of precision management and quality control.
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